61. Synthese monodisperser linearer und cyclischer Oligomere der (R)-3-Hydroxybuttersäure mit bis zu 128 Einheiten

von Urs D. Lengweiler¹), Monica G. Fritz²) und Dieter Seebach*

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich

(19.I.96)

Monodisperse Linear and Cyclic Oligo ((R)-3-hydroxybutanoates] Containing up to 128 Monomeric Units

Using benzyl ester/(tert-butyl)diphenylsilyl ether protection, (COCl)2/pyridine esterification conditions, and a fragment-coupling strategy (with H₂/Pd-C debenzylation and HF pyridine desilylation), linear oligomers of (R)-3-hydroxybutanoic acid (3-HB) containing up to 128 3-HB building blocks (mol. weight > 11000 Da) are assembled (Schemes 1, 2, 5, and 6). In contrast to the previously employed protecting-group combination, and due to the low-temperature esterifying conditions, this procedure leads to monodisperse oligomers: all steps occur without loss of single 3-HB units. The product oligomers with two, one, and no terminal protecting groups (mostly prepared in multi-gram amounts) are characterized by all standard spectroscopic methods, especially by mass spectroscopy (Figs. 2 and 3), by their optical activity, and by elemental analyses. Cyclization of the oligo[(R)-3-hydroxybutanoic acids] with up to 32 3-HB units, using thiopyridine activation and CuBr₂ for the ring closure, produces oligolides consisting of up to 128 ring atoms (Scheme 7). Mixed oligolides containing 3-HB and (R)-3-hydroxypentanoic units are prepared from the corresponding linear trimers, using Yamaguchi's method for the ring closure (Scheme 8 and Fig. 4 (X-ray crystal structures of two folded conformers)). Comparisons of melting points (*Table 1*), of $[\alpha]_{355}^{20}$ values (*Tables 2* and 3), of ¹H-NMR coupling constants (*Table 3*), and of molecular volume/hydroxyalkanoate unit (Table 4) of linear and cyclic oligomer derivatives and of the high-molecularweight polymer show that the monodisperse oligomers appear to be surprisingly good models for the polymer. Besides this insight, our synthesis is supplying the samples to further test the role of P(3-HB) (ca. 140 units) as a component of complexes forming channels through cell-wall phospholipid bilayers.

1. Einleitung

Als Speicherstoffe in Prokaryonten wurden bisher Polysaccharide, Lipide, Polyphosphate und Schwefel nachgewiesen [1] [2]. Zu der Klasse der Lipidspeicherstoffe werden auch die Polyester der Hydroxyalkansäuren (PHA's) gezählt³). Deren wichtigster Vertreter, die Poly[(R)-3-hydroxybuttersäure] (P(3-HB)), wurde in den 20er Jahren von Lemoigne aus Bacillus megaterium isoliert [9–11]. Seither wurde P(3-HB) in einer Vielzahl von Bakterien als Stoffwechselprodukt nachgewiesen, sowohl in Gram-positiven wie auch in Gram-negativen und in Cyanobakterien [12]. PHA's dienen den Mikroorganismen als Energie- und Kohlenstoffquelle sowie zur Speicherung von Reduktionsäquivalenten. Interessanterweise bilden Enterobakterien wie Escherichia coli normalerweise keine P(3-HB) als Speichermaterial.

Im Gegensatz zur hochmolekularen Speicher-P(3-HB)⁴), welche im Cytosol in Form von Granula eingelagert wird, tritt niedermolekulare P(3-HB) (ca. 140 Einheiten) in den Membranen von genetisch kompetenten prokaryotischen Zellen auf. Auch in den Mikrosomen und Mitochondrien eukaryotischer Organismen und sogar im Blutplasma von Menschen wurde P(3-HB) nachgewiesen. In den Membranen von kompetenten *E. coli* liegt sie mit Calcium-polyphosphat komplexiert vor [13-22]. Aufgrund von Kraftfeldberechnungen wurde von *Reusch* und

¹) Teil der Dissertation von U.D.L., ETH Zürich, Nr. 11405, 1995.

²) Teil der Diplomarbeit von M. G. F., ETH Zürich, 1995.

³) Für Übersichtsartikel siehe [3-8].

⁴) Molekulargewicht 10⁵-10⁶ Dalton, s-P(3-HB) (s steht für storage).

Sadoff ein exo-lipophiler/endo-polarophiler $P(3-HB)/Ca \cdot PP_i$ -Kanalkomplex postuliert (Stöchiometrie von P(3-HB) zu Polyphosphat (PP_i) zu Calcium 2:1:0,5) [16]. Der Komplex setzt sich aus einer äusseren, rechtsgängigen P(3-HB)-Helix mit 14 Einheiten pro Umdrehung und einer inneren, ebenfalls rechtsgängigen Polyphosphat-Helix mit 7 Einheiten pro Umdrehung zusammen, wobei das Ca^{2+} sowohl an den Carbonyl- wie auch an den Phosphat-O-Atomen komplexiert (s. Fig. 1, a). Dieser Komplex soll als Ionenkanal durch Membranen fungieren und für den Transport von Ca^{2+} , Polyphosphat und sogar von Einzelstrang-DNA verantwortlich sein.

Während unserer Untersuchungen zur Struktur dieses Ionenkanals wurden offenkettige und cyclische Oligomere als Modellverbindungen synthetisiert [3] [23] [24]. Anhand der *Röntgen*-Strukturdaten der Oligolide mit drei bis acht Einheiten konnte eine 2_1 - und eine 3_1 -Helix für P(3-HB) modelliert werden [3] [23]. Mit offenkettigen Oligomeren aus 16 und 32 Einheiten wurden lamellare Kristallite erhalten. Sowohl die hochmolekulare P(3-HB) [25–27] wie auch die Oligomere bilden in diesen Kristalliten eine 2_1 -Helix [24]. Aufgrund dieser Befunde, und weil keine Strukturmerkmale einer 14_1 -Helix gefunden werden konnten, wurde von uns ein alternatives Kanalmodell vorgeschlagen [24] (*Fig.1,b*).

Fig. 1. a) Von Reusch vorgeschlagene Struktur des P(3-HB)/Ca·PP₁-Kanalkomplexes [17].
b) Alternativer Vorschlag von uns für die Struktur eines Röhrchens aus P(3-HB) [24] (Abbildung aus [28]).

Um die Relevanz der verschiedenen Modelle für den $P(3-HB)/Ca \cdot PP_i$ -Kanal abschätzen zu können, sind weitere elektrophysiologische Untersuchungen an Lipiddoppelschichten [21] [29] sowie *Röntgen*-Strukturdaten von möglichst grossen Cyclen notwendig. Deshalb wollten wir monodisperse Oligomere der (*R*)-3-Hydroxybuttersäure (3-HB) mit bis zu 128 Monomereinheiten sowie Cyclen mit bis zu 32 Monomereinheiten synthetisieren und die Eigenschaften dieser Oligomere als Modellverbindungen untersuchen.

2. Synthesen der Verbindungen

2.1. Vorbemerkungen. Polymere mit einheitlicher Molmasse gewinnen immer mehr an Bedeutung, weil durch diese wohldefinierten Substanzen die makroskopischen Stoffeigenschaften von Polymeren am besten kontrolliert werden können. Eine Polymerisation liefert immer mehr oder weniger breite Molgewichtsverteilungen. Ein Mass für die Streuung ist der Polydispersionsindex⁵). Für monodisperse, also einheitliche Polymere ist M_w/M_n definitionsgemäss gleich eins. Allerdings werden Polymere mit Dispersionen kleiner als 1,1 oft als monodispers bezeichnet. Die Synthese wirklich monodisperser Oligomere ist nur durch systematischen Aufbau möglich⁶). Auch einheitliche Oligo(3-HB) wurden so schon früh hergestellt. Durch schrittweises Anhängen von einzelnen 3-HB-Einheiten wurden von Ohlsen et al. alle vier diastereoisomeren Dimere hergestellt [36], von Brändli Oligomere mit bis zu vier [37] und von Masamune und Mitarbeitern mit bis zu fünf Einheiten⁷) [40]. Ab einer gewissen Grösse der Oligomere ist eine schrittweise Verlängerung nicht mehr sinnvoll: Die Reinigung der Produkte wird mit zunehmender Kettenlänge immer schwieriger. Als Alternativen bietet sich die Segmentkupplung an einem festen Träger oder in der flüssigen Phase an. Mit der zweiten Strategie wurden von Müller nahezu monodisperse Oligomere mit bis zu 96 Einheiten synthetisiert [23] [24] [41]. Der Hydroxy-Terminus wurde als Benzylether geschützt, der Carboxy-Terminus als tert-Butylester. Als die Synthese abgeschlossen war, wurde mit MALDI-MS⁸) festgestellt, dass die Oligomere ab dem 16mer nicht mehr einheitlich waren: Bei der Abspaltung der Schutzgruppen gingen einzelne Monomereinheiten verloren. Die Probleme bei der Benzylether-Spaltung konnten durch die Wahl eines besser geeigneten Lösungsmittels umgangen werden⁹). Für die tert-Butyl-Gruppe musste entweder eine neue Abspaltungsmethode gefunden, oder sie musste durch eine andere Schutzgruppe ersetzt werden. Wie sich später zeigen sollte, traten auch noch Probleme bei der Kupplung auf.

2.2. Festlegen der Schutzgruppenstrategie. Mit einer anderen Abspaltungsmethode für die tert-Butyl-Gruppe (anstelle von CF₃COOH) könnte der Verlust von einzelnen Monomereinheiten eventuell vermieden werden. Deshalb wurde eine Reihe von möglichen Reagenzien zur Spaltung des tert-Butylesters getestet. Die Abspaltungsversuche wurden mit einem vollgeschützten $16mer^{10}$) durchgeführt, weil erst ab dieser Grösse ein Verlust von einzelnen Monomereinheiten festgestellt worden war. Zuerst wurde das Verhältnis von Lösungsmittel zu CF₃COOH variiert, das Lösungsmittel ausgetauscht und die Spaltung des tert-Butylesters bei verschiedenen Temperaturen durchgeführt. Selbst bei der Verwendung von schwächeren Säuren wie CCl₃COOH, CHCl₂COOH oder HCOOH wurde immer ein Verlust einzelner Einheiten festgestellt (die Analyse erfolgte mittels LSI-MS¹¹) der mit Diazomethan veresterten Verbindungen¹²).

Infolge dieser Ergebnisse wurde eine neue Schutzgruppe gesucht, wobei die Benzyl-Gruppe als Alkohol- oder Carbonsäure-Schutzgruppe verwendet werden sollte. Die neue Schutzgruppe musste folgende Bedingungen erfüllen, wenn das bisherige Kupplungsverfahren beibehalten würde (Erzeugung des Säurechlorids mit Oxalylchlorid und anschliessende Kupplung mit dem Alkohol): a) sie musste quantitativ in chlorierten Lösungsmitteln oder in CF₃CH₂OH unter milden Bedingungen abspaltbar sein; b) sie musste inert gegen die Hydrogenolyse-Bedingungen sein, durfte also keine Halogenide (Chlorid, Bromid oder Iodid), Doppelbindungen, Nitro- oder Sulfid-Funktionen enthalten; c) als Hydroxy-Schutzgruppe musste sie stabil sein gegen das während der Säurechlorid-Herstellung entstehende HCl; d) sie musste möglichst ohne Bildung schwer entfernbarer Nebenprodukte abspaltbar sein. Weiter musste berücksichtigt werden, dass Oligomere der 3-HB mit starken Basen unter β -Eliminierung gespalten werden.

⁵) Der Polydispersionsindex ist definiert als das Verhältnis von M_w/M_n (M_w : Gewichtsmittel; M_n : Zahlenmittel).

⁶) Es sind einige monodisperse Oligomere bekannt: So synthetisierten Lee und Wegner unverzweigte Paraffine mit bis zu 384 C-Atomen [30] und Whiting und Mitarbeiter mit bis zu 390 C-Atomen [31-33]. Rothe und Mitarbeiter stellten Oligo(ε-aminocapronsäure) mit bis zu 40 Einheiten [34] her, Xu und Moore ein Dendrimer mit 1134 C-Atomen [35].

⁷) Auch die Synthesen von Hexa-, Hepta-, Octa-, Dodeca- und Hexadecameren werden erwähnt, aber nicht beschrieben [38] [39].

⁸) Matrix-assisted-laser-desorption and ionization mass spectrometry.

⁹) P(3-HB) ist nur in halogenierten Lösungsmitteln wie CHCl₃, CH₂Cl₂, ClCH₂CH₂Cl und CF₃CH₂OH (nicht in CCl₄) löslich. In Kohlenwasserstoffen ist P(3-HB) auch in der Siedehitze unlöslich.

¹⁰) Das vollgeschützte 16mer wurde nach [23] [24] synthetisiert.

¹¹) Liquid secondary-ionisation mass spectrometry.

¹²) Andere bekannte Methoden zur Spaltung von *tert*-Butylestern liessen sich nicht anwenden, ohne die Oligomeren zu zersetzen: TosOH und Erwärmen [42], thermisch bei 200° [43] oder basisch mit KOH und [18] -Krone-6 [44].

Es wurde eine Reihe von Schutzgruppen getestet, welche mit schwachen Basen oder mit Lewis-Säuren abgespalten werden können¹³). Schliesslich wurde die 2-(Trimethylsilyl)ethyl-Gruppe ($Me_3SiCH_2CH_2$) als mögliche Carbonsäure-Schutzgruppe und die tert-Butyldiphenylsilyl-Gruppe ($(t-Bu)Ph_2Si$) als mögliche Hydroxy-Schutzgruppe gefunden. Es stellte sich heraus, dass beide in CH_2Cl_2 mit HF · Pyridin abgespalten werden können, ohne dass Verluste einzelner Monomereinheiten oder Kettenbrüche auftreten.

Mit der $Me_3SiCH_2CH_2$ -Gruppe wurden Oligomere mit bis zu 32 3-HB-Einheiten synthetisiert. Bei Entfernung der $Me_3SiCH_2CH_2$ -Gruppe wurde beim 16mer ein Teil der Benzyl-Gruppen abgespalten. Durch Variation der Reaktionsbedingungen konnte diese Nebenreaktion unterdrückt werden. Da das Risiko, dass die Nebenreaktion bei grösseren Oligomeren wieder auftreten könnte, als zu gross angesehen wurde, verzichteten wir auf eine weitere Synthese mit dieser Schutzgruppe. Zudem musste überraschenderweise festgestellt werden, dass sich das synthetisierte 32mer aus 81% 32mer und 19% 31mer zusammensetzte. Deshalb wurde versucht, monodisperse Oligomere mit der (t-Bu)Ph_2Si-Schutzgruppe herzustellen.

2.3. Synthese der selektiv geschützten Ausgangsverbindungen. Die Herstellung des Benzylesters **2** erfolgte direkt aus P(3-HB) (1). Die säurekatalysierte Umesterung wurde analog zur Herstellung das Methylesters **3** durchgeführt [50] [51]. Als Nebenprodukt entstand *ca.* 1 Equiv. Dibenzylether, welcher sich destillativ kaum abtrennen liess. Die Titanat-katalysierte Umesterung [52] mit *ca.* 10 mol-% Tetrabenzyltitanat ergab den Benzylester **2** ohne Nebenprodukt¹⁴ (Schema 1a).

Die Herstellung der Säure 5 erfolgte aus dem Methylester 3, welcher einfach aus P(3-HB)(1) zugänglich ist, über den Silyloxy-ester 4 (*Schema 1b*). Da bei der Segmentkupplungsmethode auf der untersten Stufe prozentual am meisten Schutzgruppe abge-

Schema 1. Synthese der selektiv geschützten Ausgangsverbindungen: a) (R)-3-Hydroxybuttersäure-benzylester (2), b) (R)-3-[(tert-Butyl)diphenylsilyloxy]buttersäure(5) und c) (R)-3-[(tert-Butyl)dimethylsilyloxy]buttersäure(7)

 $Bn = PhCH_2$, $TBDPS = (t-Bu)Ph_2Si$, $TBDMS = (t-Bu)Me_2Si$, DMAP = 4-(Dimethylamino)pyridin

¹³) Für Übersichten über Schutzgruppen s. [45–49].

¹⁴) Der Katalysator wurde aus Tetraethyltitanat und Benzyl-alkohol erhalten. Mit in situ hergestelltem Katalysator wurde kein Produkt gebildet.

spalten wird¹⁵), wäre es vorteilhaft, die wertvolle $(t-Bu)Ph_2Si-Schutzgruppe erst zu einem späteren Zeitpunkt einzusetzen. Als Ersatz bietet sich die <math>(tert-Butyl)$ dimethylsilyl-Schutzgruppe $((t-Bu)Me_2Si)$ an $(6 \rightarrow 7)$. Mit den beiden Säuren 5 und 7 und dem Benzylester 2 wurden nach *Schema 2* die beiden vollgeschützten Dimere¹⁶) 8 und 9 synthetisiert¹⁷),

Schema 2. Synthese des vollgeschützten Tetramers 12 aus den drei Ausgangsverbindungen 2, 5 und 7

 $Bn = PhCH_2$, $TBDPS = (t-Bu)Ph_2Si$, $TBDMS = (t-Bu)Me_2Si$, DMAP = 4-(Dimethylamino)pyridin

¹⁵) Auf der Stufe des Dimers werden formal 50%, auf der des Tetramers 25% usw. der Schutzgruppe abgespalten.

¹⁶) Als Oligomere werden jeweils die vollgeschützten Derivate vom Typ J (s. unten, *Schema 5*) bezeichnet, als oligomere Säuren diejenigen vom Typ G, als oligomere Alkohole diejenigen vom Typ H und als Oligolide diejenigen vom Typ L (s. unten, *Schema 7*).

¹⁷) Die Kupplung von 2 mit 7 kann nicht über das Säurechlorid erfolgen, da die (t-Bu)Me₂Si-Gruppe nicht stabil ist gegenüber dem bei der Säurechlorid-Herstellung entstehenden HCl ((t-Bu)Ph₂Si-Ether sind gegenüber Säuren etwa 100mal stabiler als (t-Bu)Me₂Si-Ether, gegenüber Basen sind die (t-Bu)Me₂Si-Ether, je nach OR-Gruppe, gleich stabil oder stabiler als (t-Bu)Ph₂Si-Ether [53]).

beide selektiv entschützt und zum Tetramer 12 gekuppelt. Beim letzten Kupplungsschritt entstand relativ viel Crotonat (=(Z)-But-2-enoat), und bei der chromatographischen Reinigung konnte vom Tetramer 12 ein vollgeschütztes Trimer abgetrennt werden (vom Octamer 15, synthetisiert nach *Schema 5*, entsprechend ein vollgeschütztes Heptamer, s. unten). Da die jeweiligen Edukte rein waren, musste der Verlust einer Einheit bei der Kupplung aufgetreten sein.

2.4. Untersuchung der Kupplungsmethode. Bei der Synthese des Octamers 15 (s. unten, Schema 5) konnte neben dem Heptamer ein Tetramer isoliert werden, welches am Hydroxy-Terminus mit einer zusätzlichen Crotonat-Einheit verestert war. Um den Mechanismus der Abspaltung einer Crotonsäure-Einheit aufzuklären, wurde der Kupplungsschritt ¹H-NMR-spektroskopisch untersucht¹⁸): Als Modellverbindung wurde das Säurechlorid A der dimeren Säure 10 gewählt. Das Säurechlorid A wurde nach Zugabe von Pyridin innerhalb von Minuten zersetzt, wobei das monomere Säure-Anion C und das Crotonsäure-Derivat B (X = Py⁺) entstanden (Schema 3). Mit der schwächeren Base Chinolin war die Zersetzung viel langsamer, aber sie wurde nicht vollständig unterdrückt.

Aufgrund der ¹H-NMR-spektroskopisch detektierten Produkte und der bei der Synthese des Tetramers 12 (und des Octamers 15; s. unten) isolierten Nebenprodukte wird der in *Schema 4* dargestellte Mechanismus vorgeschlagen. Das Crotonsäure-Derivat **B** $(X = Py^+)$ kann mit dem zugegebenen Hydroxy-Derivat 11 zum Trimeren **D** reagieren. Dieses Nebenprodukt ist vor allem bei grösseren Oligomeren etwa halb so gross wie das gewünschte Produkt und kann deshalb leicht entfernt werden.

Die Probleme entstehen durch die Folgeprodukte aus dem Säure-Anion C: Letzteres kann mit einem Säurechlorid zum gemischten Anhydrid E reagieren, welches von der zugegebenen Hydroxy-Verbindung 11 auf zwei Arten angegriffen werden kann: Angriff am 'richtigen' Carbonyl-C-Atom ergibt das gewünschte Tetramer 12 (Weg a), und Angriff am 'falschen' Carbonyl-C-Atom das Oligomer F (Weg b), welches um eine Einheit kürzer ist als das gewünschte Produkt 12. Auf der in Schema 4 gezeigten Stufe des Tetramers konnte das Trimer zwar problemlos abgetrennt werden, aber schon beim Octamer war die Trennung vom Heptamer bei grösseren Mengen sehr schwierig; ab dem 16mer war die Trennung vom um eine Einheit kürzeren Oligomer im präparativen Massstab nicht mehr möglich.

¹⁸) Aus Reaktionskontrollen bei der Herstellung der Säurechloride war bekannt, dass bei der Umsetzung der Carbonsäuren mit Oxalylchlorid nie Crotonsäure-Derivate entstanden [54–56].

 $TBDPS = (t-Bu)Ph_2Si$

Ohne Basenkatalyse fand keine Kupplungsreaktion statt; bei der Zugabe der sterisch anspruchsvollen Base 2,6-Lutidin (= 2,6-Dimethylpyridin) entstand sehr viel Nebenprodukt. Bei der Herstellung des Carbonsäurebromids anstelle des -chlorids wurde die $(t-Bu)Ph_2Si$ -Schutzgruppe abgespalten. Schliesslich fanden wir, dass sich der Kupplungsschritt bei -78° durchführen liess, wobei laut ¹H-NMR-Analyse unterhalb von -45° keine Zersetzung eintrat, die Kupplungsreaktion aber mit den gewohnt guten Ausbeuten ablief.

2.5. Synthese der monodispersen Oligomere J. Die Synthese der monodispersen Oligomere 15, 18, 21, 24 und 27 sowie 28, 31, 34 und 35 erfolgte ausgehend vom Tetramer 12 via 13/14, 16/17, 19/20, 22/23 bzw. 25/26 sowie mittels 10/2, 29/30, 32/33 bzw. 19/17 nach Schema 5. Die (t-Bu)Ph₂Si-Schutzgruppe des Edukt-Oligomers konnte quantitativ mit HF · Pyridin abgespalten werden (\rightarrow H). Das Nebenprodukt (t-Bu)Ph₂SiF (1 equiv.) beeinträchtigte die Kupplung nicht und liess sich bei der nachfolgenden Reinigung leicht entfernen. Die Hydrogenolyse der Benzyl-Gruppe des Edukt-Oligomers verlief problem-los (\rightarrow G); bis zum Octamer (m = 8) wurde MeOH als Lösungsmittel verwendet, ab dem 16mer CF₃CH₂OH. Die halbgeschützten Zwischenprodukte G bzw. H wurden bis zu den Octameren (m = m' = 8) ohne weitere Reinigung direkt zur Kupplung eingesetzt. Ab den 16meren wurden die Säure-Derivate G durch Umfällen aus CH₂Cl₂/Pentan, die Alkohol-Derivate H durch Digerieren in Pentan gereinigt.

Schema 5. Syntheseweg zur Herstellung monodisperser Oligomere mit bis zu 128 Monomereinheiten über eine Segmentkondensation

^a) Ausbeute an gereinigten Produkten. ^b) Ausbeute nach ^lH-NMR. Infolge von Reinigungsproblemen ist die Ausbeute an reinem Produkt nicht aussagekräftig. ^c) Edukt von G und H verschieden.

Erstaunlicherweise nahm die Ausbeute der Säurechlorid-Kupplung zu J mit steigender Kettenlänge kaum ab. Allerdings wurde die Reaktionszeit bei -78° von etwa 5 h auf über zwei Tage erhöht. Einzig die Kupplung zum 128mer 27 ergab nur eine sehr geringe Ausbeute. Dies könnte an der sehr kleinen eingesetzten Menge liegen (< 50 µmol). Die Säure 25 und der Alkohol 26 konnten nach dem üblichen Kupplungsschritt nicht mehr getrennt werden; deshalb musste zur Verbesserung der Kupplungsausbeute (laut GPC Analyse¹⁹) *ca.* 10% Umsatz) die Säure in Anwesenheit des Alkohols wieder aktiviert

¹⁹) Gel-Permeationschromatographie; auch SEC (size-exclusion chromatography).

werden. Die Aktivierung erfolgte nach der Methode von Yamaguchi [57] über das gemischte Anhydrid mit 2,6-Dichlorobenzoylchlorid. Die Isolierung der reinen Kupplungsprodukte J erfolgte zum grossen Teil durch chromatographische Trennung an Silicagel²⁰). Das 64mer 24 liess sich zwar chromatographisch (Silicagel) reinigen, aber leider traten einzelne Kettenbrüche auf. Die Reinigung gelang schliesslich durch wiederholtes Umfällen aus heissem THF. Auch die Reinigung des 128mers 27 erfolgte in einem ersten Schritt durch wiederholtes Umfällen aus heissem THF. Der Rückstand wurde schliesslich portionsweise mittels anal. GPC gereinigt.

Die Analytik der gereinigten Oligomere J mit den üblichen Methoden (¹H-NMR-, ¹³C-NMR- und IR-Spektroskopie, Elementaranalyse, EI-MS) wurde mit steigender Kettenlänge immer weniger aussagekräftig, da die Verbindungen infolge der strukturellen Ähnlichkeit im wesentlichen immer dieselben analytischen Daten ergaben: Über die Dispersität von J mit höheren *n*'s konnte keine Aussage mehr gemacht werden. Dagegen führt die Massenspektroskopie mit sogenannten weichen Ionisierungsmethoden in der Regel zu einer hohen Ionenausbeute im Molekülionenbereich, Fragmentierungen sind von untergeordneter Bedeutung [58]. So liess sich mit LSI-MS die Monodispersität aller synthetisierten Oligomere bis zum 32mer **21** eindeutig nachweisen (*Fig. 2, a* und *b*). Das LSI-MS-Signal des 64mers **24** war zu schwach, um eine Aussage über die Dispersität

Fig. 2. LSI-Massenspektren von a) vollgeschütztem 16mer 18 und b) vollgeschütztem 32mer 21 (bei [M - 86]⁺ würde je das Signal von einem (n - 1)mer erwartet) sowie c) MALDI-Massenspektrum vom vollgeschützten 64mer 24

²⁰) Bereits das Dimer 8 konnte nicht mehr destillativ gereinigt werden. Auch bei 10⁻⁵ mbar destillierten lediglich Zersetzungsprodukte ab.

machen zu können; der Nachweis der Monodispersität gelang schliesslich mittels MALDI-MS (Fig. 2, c).

Der Anteil an 64meren 25 und 26 im 128mer 27 wurde mit GPC bestimmt und betrug total *ca.* 10%. Im Gegensatz zum massenproportionalen Signal der GPC bei Detektion mit einem Refraktometer wurden im MALDI-MS höhere Massen diskriminiert. Eine Bestimmung des Anteils an 64meren 25 und 26 aus dem MS war deshalb nicht möglich. Die kleinen Signale zwischen 11300–11350 beim vollgeschützten 128mer 27 entsprechen Fragmentationen durch Verluste von *t*-Bu-, Ph- und PhCH₂-Gruppen. Durch Komplexierungen mit Na- und/oder K-Ionen kommt es zu weiteren Signalen. Aufgrund des Massenspektrums des entschützten 128mer 36 (s. Formel K, n = 128, in Schema 6) kann ein 127mer aber praktisch ausgeschlossen werden (*Fig. 3*).

Fig. 3. MALDI-MS von a) vollgeschütztem 128mer 27 (das intensivste Signal entspricht $[M + K]^+$; das Signal liegt zwei Atommasseneinheiten zu hoch) und b) entschütztem 128mer 36 (entschützt nach Schema 6; K mit n = 128; das intensivste Signal entspricht $[M + K]^+$).

2.6. Synthese von Macrocyclen mit bis zu 128 Ringatomen. Mit zunehmender Ringgrösse werden sowohl die ¹H- wie auch die Festkörper-¹³C-NMR-Spektren der Oligolide denen des entsprechenden Polymers immer ähnlicher [59]. Es wäre interessant, die Strukturen von noch grösseren Cyclen (mit mehr als acht 3-HB-Einheiten) zu bestimmen. Eventuell ist auch das Auftreten eines Strukturelements, welches zu einer 3_1 -Helix führt²¹), auf das Vorliegen der Oligomere als Cyclen zurückzuführen. Dieser 'Cycleneffekt' sollte bei grösseren Cyclen immer kleiner werden.

Fast alle bisherigen Synthesen von 3-HB-Oligoliden gingen von einem monomeren Hydroxycarbonsäure-Derivat aus. Dabei wurden immer Mischungen aus Oligoliden mit drei bis *ca.* zwölf Einheiten erhalten, wobei im Vergleich zu den kleineren Cyclen der Anteil an höheren Oligoliden kleiner und deren Isolierung schwieriger war. Als Alternative bietet sich die Cyclisierung der jetzt verfügbaren offenkettigen Vorläufer an. Für die Synthese sehr grosser Cyclen ist dieser Weg der einzig gangbare. Dazu wurden die vollgeschützten 3-HB-Derivate 15, 34, 18, 35 und 21 (*Schema 5*) zuerst am Hydroxy-Terminus (\rightarrow 17, 37, 20, 28 bzw. 23) und anschliessend am Carboxy-Terminus entschützt (\rightarrow 39-43; *Schema* 6).

 $TBDPS = (t-Bu)Ph_2Si$

n	8	12	16	24	32
J	15	34	18	35	21
H ^a)	17	37	20	38	23
K	39	40	41	42	43

^a) Das m' von H in Schema 5 ist hier n gleichzusetzen.

Das Macrolactonisierungsverfahren musste denselben Anforderungen genügen wie die Kupplungsreaktion. Wegen guter früherer Erfahrungen [23] [28] [60] setzten wir zuerst die Macrolactonisierung der Säure **39** nach *Yamaguchi* [57] und die DCC/DMAP-Methode [61] ein, aber neben dem Octolid **44** entstanden kleinere oder grössere Mengen Heptolid; mittels der Methode von *Corey* (über einen Thioester) [62] wurde kein Produkt gebildet. Nach Aktivierung des Thioesters mit CuBr₂ [63] liess sich jedoch Octolid **44** mit 50% Ausbeute isolieren (*Schema* 7); im LSI-MS fand sich kein Hinweis auf die Bildung eines Heptolids.

Die Lactonisierungsausbeuten nahmen mit steigender Anzahl Ringatome rapide ab^{22}). Die isolierten Oligolide 44–46 mit 8, 12 und 16 3-HB-Einheiten waren monodispers; lediglich bei der Cyclisierung zum Oligolid 47 aus 32 3-HB-Einheiten entstanden *ca.* 5% Cyclus aus 31 3-HB-Einheiten als Nebenprodukt²³).

2.7. Synthese von gemischten Oligoliden aus 3-HB- und 3-HV-Einheiten. Kürzlich beschrieben wir die Synthese und Charakterisierung von Trioliden, welche aus 3-HB- und

²¹) Bei hochmolekularer P(3-HB) wurde bis jetzt immer nur eine 2_1 -Helix gefunden [25] [26].

²²) Die geringe Ausbeute (3%) an Oligolid 47 ist auch auf Verluste bei der Aufarbeitung und Reinigung zurückzuführen, da sich das Produkt einzig in CF₃CH₂OH löste.

²³) Ringe mit über 100 Ringatomen sind bis heute nur von *Rothe* und Mitarbeitern systematisch, aber lediglich im analytischen Massstab synthetisiert, isoliert und identifiziert worden [64]. Die Bildung von Riesenringen wird bei der Polymerisation angenommen.

Schema 7. Synthese von Oligoliden mit bis zu 128 Ringatomen

3-HV-Einheiten²⁴) bestehen [28]. Die Synthese erfolgte durch säurekatalysierte Umesterung direkt aus dem Copolymer P(3-HB/3-HV²⁵). Da die Trennung der Triolid-Mischungen aufwendig war, wurde jetzt versucht, die 'gemischten' Triolide durch Macrolactonisierung der entsprechenden offenkettigen Vorläufer herzustellen. Die Synthese der entsprechenden Säuren 56 und 57 (*Schema 8*) erfolgte ausgehend von 2 bzw. 49 und 48 via 50–55 nach den Methoden, welche bereits für die 3-HB-Oligomere verwendet wurden (vgl. *Schema 5*), und die Macrolactonisierung wurde nach der Methode von Yamaguchi durchgeführt. Die Ausbeute an Cyclen betrug 20–40%. Neben den Trioliden 58 und 59 [28] wurden auch die Hexolide 60 und 61 im Verhältnis 2:1 bis 1:1 (Triolid/Hexolid; je nach Zutropfgeschwindigkeit) gebildet. Ein Nonolid wurde nicht entdeckt.

3. Oligomere und Oligolide als Modellverbindungen für P(3-HB). -3.1. Vergleiche der *linearen Oligomere mit P(3-HB)*. Schon früher zeigten wir, dass Oligomere aus 8, 16 und 32 Einheiten Modellverbindungen für die hochmolekulare P(3-HB) sein können [24]. Obwohl bereits das 16mer die gleichen lamellaren Kristallite ausbildet wie P(3-HB), kann das 16mer natürlich noch lange nicht als Polymer bezeichnet werden. Ein Polymer ist nach IUPAC definiert als 'eine Substanz, die aus Molekülen aufgebaut ist, die sich durch vielfache Wiederholungen von konstitutiven Einheiten auszeichnen und die so gross sind, dass sich ihre Eigenschaften bei Zugabe oder Wegnahme einer oder weniger konstitutiver Einheiten nicht wesentlich ändern', und Oligomer als 'eine Substanz, die einige konstitutive Einheiten enthält, welche repetitiv aneinandergereiht sind. Die physikalischen Eigenschaften variieren bei der Zugabe oder Wegnahme einer oder weniger konstitutiver Einheiten' [66]. Eine dieser Eigenschaften ist der Schmelzpunkt. P(3-HB) schmilzt bei 175-185°. Bei Molmassen von über 300000 g/mol wird das Maximum von ca. 190° erreicht [67]. Die Schmelzpunkte unserer synthetisierten Oligomere sind in Tab. 1 zusammengefasst. Die Schmelzpunkte²⁶) vor allem der ungeschützten Hydroxysäuren K nähern sich überraschend schnell dem Schmelzpunkt von hochmolekularer P(3-HB). Die Schmelzpunkte

²⁴) 3-HV = (R)-3-Hydroxypentansäure (das V steht für Valeriansäure).

²⁵) Dieses Copolymer mit 3-HV-Anteilen zwischen 8-19% wird von Zeneca Bio Products, GB, im 100 t/a Massstab hergestellt und unter dem Markennamen Biopol[®] vertrieben [65].

²⁶) Die Schmelzpunkte wurden in offenen Schmelzpunktröhrchen gemessen und sind nicht korrigiert.

DCC TBDMSO TBDMSC **B**n 2 R = Me 50 R = Me 51 R = Et 48 49 R = Et HF-Pyridin BnC BnC нс DBn 54 R = Me 52 R = Me 55 R ≈ Et 53 R = Et H₂, Pd-C 56 R = Me 57 R = Et 1) 2,6-Dichlorobenzoylchlorid Et₃N, THF 2) DMAP, Toluol C 58 R = Me 60 R ≕ Me 59 R = Et 61 R =: Et

Schema 8. Synthese der Säuren 56 und 57 und Cyclisierung nach der Methode von Yamaguchi zu de Trioliden 58 und 59 und den Hexoliden 60 und 61

TBDMS = (t-Bu)Me₂Si, Bn = PhCH₂, DCC = Dicyclohexylcarbodiimid, DMAP = 4-(Dimethylamino)pyridin

der einseitig geschützten Oligomere N und H liegen tiefer, die der vollgeschützten Derivate M und J noch tiefer. Dies kann darauf zurückgeführt werden, dass die Schutzgruppen wie 'Verunreinigungen' wirken und die Bildung einer Sekundärstruktur stören²⁷).

Während die Struktur von P(3-HB) im Festkörper als weitgehend aufgeklärt gelten kann, wird die Lösungsstruktur noch immer sehr kontrovers diskutiert. Aufgrund von Drehwert- und ¹H-NMR-Messungen wurde sowohl eine helicale Struktur in Lösung [26] [68–71] wie auch ein 'random coil' vermutet [72] [73]. Durch Bestimmung der Spin-Gitter-Relaxationszeit konnte gezeigt werden, dass P(3-HB) in Lösung eine sehr flexible Verbindung ist [74] [75].

Wohl infolge der sterisch anspruchsvollen (t-Bu)Ph₂Si-Schutzgruppe gelang es nicht, lamellare Kristallite der Verbindungen 18 und 35 zu züchten.

Tab. 1. Schmelzpunkte [°] einiger synthetisierter Oligomere (für die Synthese der Oligomere M und N s. [55])

Hinweise auf die Struktur der Oligomere in Lösung bieten sowohl die NMR-Kopplungskonstanten wie auch die optischen Drehwerte (*Tab.2*). Ein Vergleich der Kopplungskonstanten der CH₂-Gruppe zeigt, dass bereits ein 16mer gleiche Werte für alle drei Kopplungskonstanten J_{AX} , J_{BX} und J_{AB} wie auch für die chemische Verschiebung v_A und v_B aufweist wie das Polymer²⁸). Die Drehwerte $[\alpha]_{365}^{20}$ (CH₂Cl₂) nähern sich dem von P(3-HB). Die kontinuierliche Näherung ab den Tetrameren wäre mit einer allmählichen Bildung von Sekundärstrukturelementen vereinbar. Überraschenderweise gleicht sich der

Fur die Strukturen von M, N, K, J, H und G, S. <i>Tab. 1</i> .						
n	M	N	K	J	Н	G
1	-62,3	-28,2		+26,9		+22,6
2	-41,2	-63,3		+17,5	-38,6	-3,2
3				+14,8	-31,9	+0,8
4	-26,7	-32,8	-52,9	+13,8	-24,9	-4,5
6				+13,0	-13,0	+3,0
8	-11,6	-13,0		+12,6	-7,7	+2,6
12			-7,7	+29,2	-1,0	
16	-1,4	-0,6		+12,5	+2,4	+7,9
24				+12,4	+5,3	
32	+6,0		+3,8	+12,3	+7,1	+9,7
64			+7,1	+12,3	+9,6	
P(3-HB)			+11,7			

Tab. 2. Drehwerte $[\alpha]_{365}^{20}$ (in CH₂Cl₂) einiger synthetisierter Oligomere. Für die Strukturen von M, N, K, J, H und G, s. Tab. 1.

²⁸) Für einen Vergleich der Kopplungkonstanten, s. [54].

Drehwert der vollgeschützten Oligomere J mit den sterisch anspruchsvollsten Schutzgruppen am schnellsten demjenigen von P(3-HB) an. Im Gegensatz zu den vollgeschützten Derivaten M und den anderen Derivaten sind auch alle Werte positiv. Vor allem aufgrund des grossen Unterschieds der beiden vollgeschützten Derivate M und J scheinen die Drehwerte mehr von den Schutzgruppen beeinflusst zu sein als von einer eventuell gebildeten Sekundärstruktur. Falls die sterisch anspruchsvollen Schutzgruppen der Oligomere J die Bildung einer Sekundärstruktur auch in Lösung verhindern, so müssten die Oligomere als 'random coil' vorliegen. Dies wäre ein Hinweis, dass auch P(3-HB) als 'random coil' vorliegt.

Eine sehr junge Methode zur Bestimmung von Sekundär- und Tertiärstrukturen in Lösung ist die Elektrospray-Massenspektrometrie (ES-MS). Sie wird vor allem zur Strukturaufklärung von Peptiden benutzt [76]. Oligomere vom Typ J und K mit n = 8, 16, 24, 32 und 64 wurden von *Przybylski et al.* [77] ES-massenspektrometrisch untersucht. Die höchsten Ladungen betrugen für alle Oligomere (n/16 + 1). Dieses Ergebnis kann so gedeutet werden, dass die Oligomeren in Lösung ähnlich wie in den Lamellen vorliegen und maximal pro Faltung und pro Kettenende je eine Ladung aufnehmen können.

Zur Überprüfung dieser These wurde mit ¹H-NMR-Spektroskopie nach Hinweisen auf derartige Faltungen gesucht. Dazu wurde entschütztes 32mer **43** in CD₂Cl₂ bei Raumtemperatur gemessen, langsam bis -95° abgekühlt und weiter jeweils in Schritten von *ca.* 20° ¹H-NMR-spektroskopisch untersucht. Aus diesen Spektren konnte aber kein Hinweis auf eine Faltung in Lösung gefunden werden. In einem zweiten Ansatz wurde zur Probe portionenweise Et₂O gegeben. In einem Lösungsmittelgemisch, in welchem das Oligomer kaum noch löslich ist, könnte nämlich eine Sekundärstruktur gebildet werden. Überraschenderweise bildete sich bei einem Lösungsmittelverhältnis CH₂Cl₂/Et₂O von 7:3 (ν/ν) ein Gel, dessen ¹H-NMR-Spektrum aber keinen Hinweis auf eine Faltung zeigte. Die Gel-Bildung wurde mit Lichtstreuung genauer untersucht. Es zeigte sich, dass das entschützte 32mer **43** selbst in CH₂Cl₂ kleine Agglomerate von einigen wenigen Molekülen bildete. Nach der Zugabe von 20% (ν/ν) Et₂O traten bereits Agglomerate mit einem hydrodynamischen Radius von etwa 3000 Å auf, und nach der Zugabe von total 25% (ν/ν) bildete sich das Gel.

3.2. Vergleich der Oligolide mit P(3-HB). Obwohl es bisher nicht gelang, Einkristalle der grossen Oligolide zu züchten, können doch einige interessante Vergleiche zwischen ihnen und der P(3-HB) angestellt werden. Bereits während der Synthesen der Oligolide wurde folgendes Lösungsverhalten festgestellt: Während das ungeschützte 16mer 41 in CH₂Cl₂ sehr schlecht löslich war, löste sich der Cyclus 46 mit 16 Einheiten sehr gut. In einer 2_1 -Helix hätte das offenkettige 16mer 41 eine Länge von *ca*. 50 Å und das cyclische 16mer 46 von *ca*. 25 Å (bei einer engen Faltung, vgl. unsere früheren Arbeiten über lamellare Kristallite [24] [78]). Genau umgekehrt verhielten sich die 32mer 43 und 47: Das offenkettige 32mer 43 war sehr gut löslich, das cyclische 32mer 47 unlöslich. Das offenkettige 32mer 43 hätte als 2_1 -Helix eine Länge von *ca*. 50 Å (wiederum bei einer engen Faltung). Das ähnliche Lösungsverhalten vom offenkettigen 16mer 41 und cyclischen 32mer 47 kann eventuell auf verwandte Festkörperstrukturen zurückgeführt werden²⁹).

²⁹) Lamellare Kristallite der P(3-HB) haben eine Dicke von ca. 50 Å [24] [78].

Ein Vergleich der Kopplungskonstanten und der Drehwerte zeigt, dass sich die Lösungsstruktur mit steigender Anzahl der Monomereinheiten schnell jener von P(3-HB) annähert (*Tab. 3*), ab dem Octolid kontinuierlich³⁰). Vor allem die Lösungsstrukturen der Cyclen mit n = 12, 16 und 32 wären nach diesen Kriterien fast identisch mit derjenigen der hochmolekularen P(3-HB). Im Gegensatz zu den offenkettigen Derivaten haben die Cyclen keine Endgruppen³¹), welche die Struktur beeinflussen können.

		-	-		
n	J _{AX}	J _{BX}	J _{AB}	$[\alpha]_{\rm D}^{20}$	$[\alpha]_{365}^{20}$
3 ^a)	11,3	2,1	13,5	-33,9	-89,5
4 ^a)	8,8	2,6	16,0	+15,4	+65,9
5 ^a)	8,0	5,5	15,2	+6,7	+29,4
6 ^a)	8,8	4,6	15,9	+11,1	+53,5
7 ^a)	8,6	4,8	15,7	-1,0	+16,2
8 ^a)	8,0	5,3	15,7	+3,1	+24,7
9 ^a)	7,9	5,4	15,6	+0,8	+18,0
10 ^a)	7,8	5,5	15,6	+0,5	+17,5
12	7,6	5,6	15,6	+6,5 ^b)	+19,8 ^b)
16	7,5	5,7	15,5	$+1,3^{b}$)	$+14,0^{b}$)
32°)	7,5	5,7	15,6	-	_
P(3-HB)	7,4	5,8	15,5	-1,8	+10,2

 Tab. 3. Kopplungskonstanten der beiden Methylenprotonen und Drehwerte für alle bisher synthetisierten Oligolide L der 3-HB

^a) Die Werte dieser Cyclen stammen aus [54].

^b) Diese Drehwerte wurden in CH₂Cl₂ gemessen, alle anderen in CHCl₃ (Drehwerte von P(3-HB) in CH₂Cl₂: $[\alpha]_{20}^{D} = +0.6, [\alpha]_{365}^{20} = +11.7$).

^c) Die NMR-Spektren wurden in CHCl₃/Aceton 2,5:1 aufgenommen.

3.3. Röntgen-Strukturen der gemischten Hexolide **60** und **61** und Vergleiche mit dem Copolymer P(3-HB/3-HV). Die Röntgen-Strukturanalysen von **60** und **61** (Fig. 4) zeigen, dass die Geometrie der (3-HB/3-HV)-Hexolide derjenigen des reinen 3-HB-Hexolids sehr ähnlich ist. Beide liegen in der gefalteten Form vor (Raumgruppe $P2_1$)³²).

Bei der Verfeinerung der Struktur des Hexolids **61** wurden bei den beiden Me-Gruppen Restelektronendichten gefunden; die Moleküle sind betreffend der Lage der Et-Gruppen also leicht ungeordnet. Aus dem Volumen der Einheitszellen (1498,4 Å³ für **60**, 1626,8 Å³ für **61**) kann der durchschnittliche Volumenanteil pro Hydroxyalkanoat-Einheit berechnet werden (*Tab. 4*). Die Werte für die beiden gemischten Hexolide **60** und **61** stimmen gut mit den Werten für die entsprechenden Polymere überein. Der Wert für das 3-HB-Hexolid ist leicht zu hoch (gefaltete Konformation), für das zweite Konformere (Raumgruppe C2) ist die Übereinstimmung besser.

³⁰) Keiner der Cyclen mit n = 3-8 hat im Kristall eine C_n -Symmetrie. In den ¹H- und ¹³C-NMR-Spektren hingegen zeigen alle Cyclen eine C_n -Symmetrie.

³¹) Auch das Polymer hat 'keine' Endgruppen.

³²) Vom reinen 3-HB-Hexolid existiert eine zweite Konformation (Raumgruppe C2 [79]). Vom reinen 3-HV-Hexolid wurden Einkristalle mit einer anderen Faltung isoliert (Raumgruppe P2₁2₁2₁) [28].

Fig. 4. Stereo-ORTEP-Darstellung der Strukturen a) des Hexolids 60 (Me₄Et₂) und b) des Hexolids 61 (Me₂Et₄). c) Überlagerung der Kristallstrukturen der Hexolide 60 und 61 mit derjenigen des reinen 3-HB-Hexolids (Me₆). Die Röntgen-Strukturanalysen von 60 und 61 wurden von F.N.M. Kühnle durchgeführt [80].

P(3-HB/3-HV) ^a)		Hexolide ^b)		
3-HV-Anteil	Volumen ^c) [Å ³]	Volumen ^c) [Å ³]	3-HV-Anteil	
0%	112	117 (C 2)	0%	
		$120(P2_1)$	0%	
34 %	123	125	33%	
71%	135	137	67%	
100%	135	139 ^d)	100 %	

Tab. 4. Vergleich der durchschnittlichen Volumenanteile pro Hydroxyalkanoat-Einheit
bei P(3-HB/3-HV) und bei den Hexoliden

^a) Die Werte stammen aus [82].

^b) Für das reine 3-HB-Hexolid s. [79], für das 3-HV-Hexolid [28].

^c) Das Volumen ist pro Hydroxyalkanoat-Einheit anggeben.

d) Dieses Hexolid hat eine andere Konformation und ist nur bedingt vergleichbar.

Beide gemischten Hexolide weisen zudem die schon früher identifizierten Δ - und S-Strukturelemente auf³³). Aufgrund der nahezu identischen Grundgerüste (*Fig. 4*) unterscheiden sich auch die Δ - und S-Strukturelemente kaum. Somit sind auch die Ganghöhen der aus den drei Hexoliden konstruierten 2₁-Helices fast gleich. Für die Änderungen der Ganghöhe der 2₁-Helix beim Übergang von P(3-HB) zu P(3-HV) mit verschiedenen 3-HV-Anteilen (5,96 Å für 0% 3-HV; 6,00 Å für 34% 3-HV; 5,58 Å für 71% 3-HV [82]) eignen sich die Hexolide deshalb nicht als Modellverbindungen³⁴).

Wir danken Florian N. M. Kühnle für die Röntgen-Strukturanalyse, und Roland Meier für die im Rahmen seiner Diplomarbeit (Sommersemester 1992) erzielten Ergebnisse. Für die Durchführung der Gel-Messungen möchten wir uns bei Dr. P. Schurtenberger, Institut für Polymere, ETH Zürich, bedanken. Die Synthesen wären ohne die grosszügige kostenlose Lieferung von P(3-HB) durch die Firma Zeneca Bio Products (Billingham, GB) nicht möglich gewesen. Auch für die Lieferung von Tetraethyltitanat durch die Firma Hüls AG (Rheinfelden, D) und von (t-Bu)Ph₂SiCl durch die Firma FMC Corporation (Bessemer City, USA) möchten wir uns bedanken. Ein weiterer Dank gilt den Damen und Herren aus den MS- und NMR-Serviceabteilungen unseres Laboratoriums sowie dem Personal des Kilolabors.

Experimenteller Teil

1. Allgemeines. Abkürzungen: AAV: Allgemeine Arbeitsvorschrift; DMAP: 4-(Dimethylamino)pyridin; i. HV.: im Hochvakuum, d.h. 0,1-0,01 Torr; i.V.: im Vakuum, d.h. 10-15 Torr. Alle Lsgm. waren von der Qualität puriss. p.a. von Fluka bzw. Riedel de Häen oder wurden über geeigneten Trocknungsmitteln destilliert. THF wurde direkt vor Gebrauch über Na-Draht/Benzophenon unter Ar destilliert. Tetraethyltitanat wurde bei Hüls und (t-Bu)Ph₂SiCl bei FMC bezogen. P(3-HB) ist ein Produkt der Firma Zeneca Bio Products. Alle anderen Reagenzien sind bei Fluka, Merck oder Aldrich erhältlich. Schmp.: Büchi-510-Schmelzpunktsapparatur mit 50°-Bereich Anschütz-Thermometern; nicht korrigiert. DC: Fertigplatten, Kieselgel 60 F_{254} (Merck); Sichtbarmachen unter UV-Licht (254 nm), mittels Molybdän-Reagens (2,5 g Cer(IV)sulfat·4 H₂O, 75 g Ammoniummolybdat·4 H₂O, 600 ml 10% H₂SO₄-Lsg.) oder im Iod-Bad (30 g I₂, 2 g KI, 200 ml EtOH, 200 ml H₂O) durch Eintauchen und Trocknenlassen. Säulenchromatographie: Kieselgel 60 F_{254} (Fluka, Korngrösse 63-200 µm; Normaldruck-Chromatographie, NC); Kieselgel 60 F_{254} (Fluka, Korngrösse 40-63 µm; 'flash'-Chromatographie, FC; N₂-Überdruck von 0,2 bar). GPC: Waters-HPLC-GPC-System bestehend aus einem '600E multi solvent delivery system', Detektion mit einem 410-Differentialrefraktometer; Kombination von drei GPC-Säulen (Shodex K-802, K-802, 5)

³³) Für eine ausführliche Diskussion des Δ- und S-Strukturelementes s. [3] [23] [28] [81].

³⁴) Sowohl die berechnete Ganghöhe aus den 3-HB-Oligoliden (6,0 Å) wie auch jene aus dem 3-HV Hexolid (5,6 Å) stimmen mit den an den entsprechenden Polymeren gemessenen Werten gut überein.

und *K-803*; stat. Phase Styrol/Divinylbenzol-Copolymer) mit CHCl₃ bei einer Säulentemp. 35°; CHCl₃, Fluss 1 ml/min; Turbomolekularpumpe: *Balzers TPG 251* (10⁻⁴–10⁻⁶ mbar). Kugelrohrofen: *Büchi GKR-50*. Spezifische Drehung: *Perkin-Elmer-Polarimeter 241*; 10-cm-Zellen; bei RT. Lsgm. in Klammern. IR: *Perkin-Elmer-297*. Spektrometer; CHCl₃-Lsg.; in cm⁻¹. ¹H- und ¹³C-NMR-Spektren: falls nichts anderes angegeben in CDCl₃; *Bruker AMX-II-500* (500 MHz), *AMX-400* (400 MHz) und *WM-300* (300 MHz), *Varian Gemini-300* (300 MHz) und *Gemini-200* (200 MHz); chemische Verschiebungen (δ) in ppm rel. zu internem SiMe₄; Kopplungskonstanten J in Hz. Massenspektren: El-MS, *Hitachi-Perkin-Elmer RMU 6M*; LSI-MS, *VG ZAB2-SEQ*, 3-Nitrobenzyl-alkohol (3-NOBA) als Matrix; MALDI-MS, *Bruker-Reflex-MALDI-TOF-*Spektrometer; Angabe von *m/z* (rel. Intensität in %). Die Elementaranalysen wurden im Mikroanalytischen Labor des Laboratoriums für Organische Chemie der ETH-Zürich durchgeführt. Die Nomenklatur der offenkettigen Oligomere ab den Hexameren richtet sich nach den für Polymere geltenden IUPAC-Regeln [83].

2. AAV. 2.1. Herstellung der Säurechloride (AAVI). Die Säuren (1 equiv.) wurden in x ml CH₂Cl₂ gelöst und bei RT. in einem Rundkolben mit aufgesetztem Blasenzähler mit 1,5 equiv. Oxalylchlorid versetzt. Es wurde gerührt, bis keine Gas-Entwicklung mehr sichtbar war (2–8 h). Die flüchtigen Bestandteile wurden i.V. bei RT. abgezogen und die resultierenden leicht gelben Öle oder Feststoffe i.HV. gut getrocknet (bei Ölen in grossen Kolben (Spritzgefahr)). ¹H-NMR: $v_A = 3,18$, $v_B = 3,03$, (AB von ABX, $J_{AX} = 7,4$, $J_{BX} = 5,3$, $J_{AB} = 17,0$, endständiges CH₂, bzgl. entsprechender Säuren zu tieferem Feld verschoben).

2.2. Kupplung der Säurechloride mit den entsprechenden Alkoholen (AAV2). Die rohen, gut getrockneten Säurechloride wurden unter Ar in x ml CH₂Cl₂ (über Molekularsieb (4 Å) getrocknet) gelöst und in einem Trockeneis/Aceton-Bad auf -78° (oder im Eis/Wasserbad auf 0°) abgekühlt. Bei dieser Temp. wurden l equiv. Alkohol in y ml CH₂Cl₂ zugegeben und innerhalb von 30 min 1,5 equiv. Pyridin (über Molekularsieb (4 Å) getrocknet) in z ml CH₂Cl₂ (über Molekularsieb (4 Å) getrocknet) zugetropft. Die Reaktionen waren stark exotherm. Je nach Konzentration der Lsg. fiel ein Feststoff aus, der durch Zugabe von weiterem CH₂Cl₂ gelöst wurde. Dann liess man 12–18 h auf RT. aufwärmen und rührte weitere 2–10 h bei RT. (Reaktionskontrolle mit DC (Et₂O/Pentan 1:1) oder ¹H-NMR). Am Ende wurde Et₂O zugegeben und die org. Phase 2mal mit 1N HCl und je Imal mit ges. NaHCO₃-Lsg. und NaCl-Lsg. gewaschen, getrocknet (MgSO₄) und eingedampft. Nach dem Trocknen i.HV. wurden die Rohprodukte wie beschrieben gereinigt.

2.3. Hydrierung (AAV3). Die Benzylether- oder Benzylester-geschützten Oligomere wurden in MeOH, AcOEt oder CF₃CH₂OH gelöst, mit 10% Pd-C versetzt und unter H₂ hydriert (doppelter Ballon). Die Kolben wurden nur zu *ca.* ¼ gefüllt und der Inhalt kräftig gerührt. Im allgemeinen waren die Reaktionen nach 5–10 h (Benzylester nach 2–5 h) beendet (DC(Et₂O/Pentan 1:1)- oder ¹H-NMR-Kontrolle). Am Ende wurde über *Celite* abfiltriert und mit CH₂Cl₂ nachgespült. Die schwach gelben Lsgn. wurden bei RT. eingedampft und i.HV. gut getrocknet. Die erhaltenen Öle oder Feststoffe wurden ohne weitere Reinigung für die Kupplung verwendet.

2.4. Abspaltung der (tert-Butyl) diphenylsilyl-Gruppe (AAV4). Das vollgeschützte Oligomer wurde in x ml CH_2Cl_2 in einer Polyethylen-Flasche gelöst und auf 0° abgekühlt. Es wurden y ml 70% HF ·Pyridin-Lsg. zugespritzt und bei 0° kräftig gerührt (HF ·Pyridin bildet in CH_2Cl_2 eine Emulsion: Die Lsg. muss kräftig gerührt werden, da sonst die Schutzgruppe nicht abgespalten wird). Nach 20 min wurde die Lsg. auf die doppelte Menge H_2O gegossen, Et_2O zugegeben, und die org. Phase 3mal mit H_2O , 2mal mit ges. NaHCO₃-Lsg. und mit NaCl-Lsg. gewaschen, getrocknet (MgSO₄) und bei RT. eingedampft. Nach gutem Trocknen i.HV. wurden die erhaltenen leicht rötlichen Öle oder Feststoffe, welche neben dem Produkt 1 equiv. $(t-Bu)Ph_2SiF$ enthielten, ohne weitere Reinigung für die Kupplung eingesetzt.

2.5. Kupfer-aktivierte Macrolactonisierung nach Corey [62] [63] (AAV5). Die freien Oligomere und 1,05 equiv. Di-2-pyridyl-disulfid (=2,2'-Dithiobis[pyridin]) wurden in einem ausgeheizten Metallierungskolben unter Ar in x ml CH₂Cl₂ (über Molekularsieb (4 Å) getrocknet) gelöst und auf 0° gekühlt. Nach Zugabe von 1,05 equiv. PPh₃ in y ml CH₂Cl₂ (über Molekularsieb (4 Å) getrocknet) trat eine gelbe Verfärbung auf. Das Eisbad wurde entfernt und es wurde 2 h nachgerührt. Nach Zugabe von 1,05 equiv. CuBr₂ fiel ein orange-grünlicher Niederschlag aus. Nach 12–48 h Rühren bei RT. (Reaktionskontrolle mittels ¹H-NMR) wurde die Suspension wie beschrieben aufgearbeitet.

3. Oligomere. 3.1. Monomere. (R)-3-Hydroxybutansäure-benzylester (2). a) Säurekatalysiert: Es wurden 80 g (0,93 mol) P(3-HB) (1) und 22,82 g (0,12 mol) Toluol-4-sulfonsäure-monohydrat in 800 ml 1,2-Dichlorethan unter Rückfluss erhitzt (inverser Wasserabscheider). Nach 8 h wurden 300 ml (2,88 mol) Benzyl-alkohol zugegeben; nach 3 d wurde die violette Lsg. mit halbges. NaCl-Lsg., ges. NaHCO₃-Lsg. und ges. NaCl-Lsg. gewaschen, getrocknet (MgSO₄) und eingedampft. Destillation im Kugelrohrofen (105–115°/0,05 Torr) ergab 148,42 g farbloses Öl als (1:1)-Gemisch von Bn₂O und 2 (0,37 mmol, 40%).

b) *Titanat-katalysiert* [52]: In einer Mikrodestillationsapparatur wurden 6 ml (30 mmol) Tetraethyltitanat in 40 ml (0,39 mol) Benzyl-alkohol bei 130° gerührt, wobei das freigesetzte EtOH abdestilliert wurde. Nach 2 h wurden

ca. 20 ml Toluol zugefügt, um noch vorhandenes EtOH mittels Azeotrop abzudestillieren. Nach 3–4 h (¹H-NMR-Kontrolle) wurden die rötliche Lsg. und weitere 70 ml (0,67 mol) Benzyl-alkohol zu 25 g (0,30 mol) P(3-HB) (1) in 250 ml 1,2-Dichloroethan gegeben, welche 5 h unter Rückfluss erhitzt worden waren. Nach 16 h (¹H-NMR-Kontrolle) wurde die violette Lsg. 2mal mit halbges. KF-Lsg. gewaschen. Die org. Phase wurde mit 1N HCl, ges. NaHCO₃-Lsg. und ges. NaCl-Lsg. gewaschen, getrocknet (MgSO₄) und eingedampft. Destillation im Kugelrohrofen (105–115°/0,05 Torr) ergab 31,95 g (57%) **2**. Farbloses Öl. ¹H-NMR (200 MHz): 7,4–7,3 (*m*, 5 arom. H); 5,2 (*s*, PhCH₂O); 4,3–4,2 (*m*, CH); 2,95 (br. OH); 2,6–2,4 (*m*, CH₂); 1,3–1,2 (*d*, Me).

(R)-3-[(tert-Butyl)diphenylsilyloxy]butansäure-methylester (4). Zu einer Lsg. von 62,5 g (0,53 mol) (R)-3-Hydroxybutansäure-methylester (3) [50] [51] in 1,5 1 DMF wurden 47,60 g (0,70 mol) 1H-Imidazol gegeben. Die Lsg. wurde auf 0° abgekühlt, mit 150,0 g (0,52 mol; 5 mol-% Silanol enthaltend) (t-Bu)Ph₂SiCl versetzt und innerhalb von 2 h auf RT. erwärmt. Nach weiteren 2 h wurde 1 equiv. DMAP zugegeben und 12 h bei RT. gerührt (DC-Kontrolle). Das Lsgm. wurde i.HV. bei 50° entfernt, Et₂O (1,2 l) zugegeben und die org. Phase 3mal mit 1N HCl, je Imal mit ges. NaHCO3-Lsg. und NaCl-Lsg. gewaschen, getrocknet (MgSO4) und bei RT. eingedampft. Nach Trocknen i. HV. erhielt man 183,5 g farbloses Öl als (1:2)-Gemisch von Silanol und 4 (0,41 mol, 79%). Die Reinigung mittels Destillation i.HV. (110°/0,02 Torr) gelang nicht, weil Silyl-Verbindungen weit unter dem Siedepunkt der Glaswand entlang kriechen können. Zur Bestimmung der anal. Daten wurde 1,0 g mittels FC $(CH_2Cl_2/Pentan 1:1)$ gereinigt. $[\alpha]_{DD}^{20} = -5,07, [\alpha]_{305}^{20} = -14,2$ (c = 1,125, CH₂Cl₂). IR: 3072w, 2954m, 2932m, 2859m, 1959w, 1903w, 1826w, 1732vs, 1590w, 1428s, 1379m, 1305m, 1111vs, 1084s, 997m, 822m. ¹H-NMR (300 MHz): 7,71-7,64 (m, 4 arom. H); 7,50-7,34 (m, 6 arom. H); 4,35-4,25 (m, 1 CH); 3,59 (s, MeO); 2,56, 2,39 (AB von ABX, $J_{AB} = 14,63$, $J_{AX} = 7,05$, $J_{BX} = 5,75$, CH₂); 1,11 (d, J = 6,15, Me); 1,02 (s, t-Bu). ¹³C-NMR (75 MHz): 171,82; 135,87; 134,37; 133,95; 129,65; 129,58; 127,51; 66,91; 51,37; 44,48; 26,90; 23,63; 19,20. EI-MS: 355,1 (0,2), 341,1 (0,3), 325,1 (2,6), 299,1 (86), 257,1 (7), 213,1 (100), 199,1 (7), 183,1 (26), 153,0 (29). Anal. ber. für C₂₁H₂₈O₃Si: C 70,74, H 7,92; gef .: C 70,45, H 8,20.

(R)-3-[(tert-Butyl)diphenylsilyloxy)butansäure (5). Zu einer Lsg. von 36,40 g (0,65 mol) KOH in 650 ml EtOH wurden bei 0° 183,5 g 4 (0,41 mol)/Silanol 2:1 gegeben und innerhalb von 6 h auf RT. erwärmt. Die Lsg. wurde weitere 12 h bei RT. gerührt und dann bei RT. eingedampft. Nach Zugabe von 11H₂O wurde die wässr. Lsg. 2mal mit Et₂O extrahiert, dann mit 70 ml conc. HCl-Lsg. angesäuert und 3mal mit CH₂Cl₂ extrahiert. Die CH₂Cl₂-Phasen wurden getrocknet (MgSO₄) und eingedampft. Trocknen i.HV. ergab 110,86 g leicht gelbliches Öl, das kristallisierte. Umkristallisieren aus Hexan lieferte 104,3 g (74%) 5. Weisser Feststoff. Schmp. 71,0–71,5°. $[\alpha]_D^{20} = +6.4, [\alpha]_{365}^{20} = +22,6 (c = 0,645, CH₂Cl₂). IR: 3023w, 2932m, 2859m, 1712vs, 1590w, 1472w, 1428s, 1111vs, 998m, 822m. ¹H-NMR (300 MHz): 7,70–7,66 (m, 4 arom. H); 7,48–7,35 (m, 6 arom. H); 4,31–4,21 (m, CH); 2,51 (d, J = 6,20, Me); 1,05 (s, t-Bu). ¹³C-NMR (75 MHz): 175,64; 135,85; 133,89; 133,43; 129,78; 127,70; 127,61; 66,75; 43,85; 26,90; 23,28; 19,17. EI-MS: 341,2 (< 0,1), 327,2 (< 0,1), 309,2 (< 0,1), 285,1 (44), 243,1 (10), 199,1 (100), 181,1 (6), 139,0 (41), 77,0 (8). Anal. ber. für C₂₀H₂₆O₃Si: C 70,14, H 7,65; gef.: C 70,19, H 7,75.$

(R)-3-[(tert-Butyl)dimethylsilyloxy]butansäure (7). Zu 30,0 g (0,29 mol) (R)-3-Hydroxybutansäure (6) in 300 ml CH₂Cl₂ wurden 96,5 g (0,64 mol) (t-Bu)Me₂SiCl gegeben und auf 0° abgekühlt. Innerhalb von 15 min wurden 90 ml (0,65 mol) Et₃N zugetropft und dann 36,6 g (0,30 mol) DMAP zugegeben. Die Lsg. wurde auf RT. erwärmt und weitere 36 h gerührt. Nach Zugabe von 200 ml Pentan wurde die weisse Suspension über *Celite* abfiltriert und bei RT. eingedampft. Dann wurden 800 ml IN NaOH zugegeben und 1 h bei RT. gerührt. Die Lsg. wurde and mit Et₂O extrahiert, mit 100 ml conc. HCl-Lsg. angesäuert und 3mal mit Et₂O extrahiert. Die vereinigten Et₂O-Phasen wurden mit NaCl-Lsg. gewaschen, getrocknet (MgSO₄) und bei RT. eingedampft. Trocknen i.HV. ergab 52,5 g (84%) 7. Farbloses Öl. $[\alpha]_D^{20} = -9,0, [\alpha]_{365}^{20} = -22,2 (c = 1,02, CH₂Cl₂). IR: 3010w, 2957s. 2940s, 2858s, 1712vs, 1472m, 1379m, 1258s, 1132m, 1085s, 1003s, 939w, 838vs. ¹H-NMR (300 MHz): 4,33-4,23 (m, CH); 2,50, 2,48 ($ *AB*von*ABX*,*J_{AB}*= 14,97,*J_{AX}*= 6,49,*J_{BX}*= 5,66, CH₂); 1,23 (*d*,*J*= 6,15, Me); 0,88 (s, t-Bu); 0,09 (s, MeSi); 0,07 (s, MeSi). ¹³C-NMR (75 MHz): 176,49; 65,71; 44,25; 25,72; 23,63; 17,95; -4,53; -5,08. EI-MS: 219,2 (0,14), 217,2 (0,19), 203,1 (2,9), 161,1 (100), 119,1 (98), 75,0 (65).

3.2. Dimere. (3 R)-3-{{(3' R)-3'-{ $(\text{tert-Butyl})diphenylsilyloxy}butanoyl}oxy}butansäure-benzylester (8).$ Säurechlorid-Herstellung nach <math>AAV1, mit 65,0 g (0,19 mol) 5 in 500 ml CH₂Cl₂. Kupplung analog AAV2, bei -15° mit 38,8 g (0,20 mol) 2 in 500 ml CH₂Cl₂. NC (CH₂Cl₂) ergab 82,15 (83%) 8 als farbloses Öl. Zur Bestimmung der anal. Daten wurden 200 mg mittels FC (CH₂Cl₂/Pentan 1:1) gereinigt. DC (CH₂Cl₂): R_{f} 0,5. $[\alpha]_{20}^{20}$ = +4,55, $[\alpha]_{365}^{20}$ = +17,5 (c = 0,78, CH₂Cl₂). IR: 3071w, 2963m, 2932m, 2859m, 1964w, 1892w, 1735vs, 1589w, 1428m, 1381s, 1302s, 1177s, 1111vs, 1005s, 822m. ¹H-NMR (400 MHz): 7,68-7,65 (m, 4 arom. H); 7,44-7,28 (m, 11 arom. H); 5,26-5,18 (m, CH); 5,08 (s, PhCH₂O); 4,28-4,20 (m, CH); 2,64, 2,50 (AB von ABX, J_{AB} = 15,50, J_{AX} = 7,10, J_{BX} = 6,10, CH₂); 2,47, 2,33 (AB von ABX, J_{AB} = 14,55, J_{AX} = 5,83, J_{BX} = 6,76, CH₂); 1,22 (d, J = 6,32, Me); 1,09 (d, J = 6,12, Me); 1,03 (s, t-Bu). ¹³C-NMR (75 MHz): 170,34; 169,97; 135,85; 134,34; 134,04; 129,65; 129,58; 128,58; 128,28; 127,51; 67,27; 66,75; 66,40; 44,67; 40,80; 26,93; 23,40; 19,80; 19,19. LSI-MS: 541,3 (2,0), 517,3 (0,7), 461,2 (37), 441,2 (8), 375,1 (3,3), 285,1 (28), 265,1 (16), 239,1 (12), 199,1 (55), 135,1 (37), 91,0 (100). Anal. ber. für $C_{31}H_{38}O_5Si: C 71,78, H 7,36;$ gef.: C 71,99, H 7,39.

(3 R)-3-{{(3' R)-3'-[(tert-Butyl)dimethylsilyloxy]butanoyl}oxy}butansäure-benzylester (9). Zu 50,0 g (0,23 mol) 7 und 50,44 g (0,26 mol) 2 in 700 ml CH₂Cl₂ bei 0° wurde eine auf 0° abgekühlte Lsg. von 50,55 g (245 mmol) DCC und 2,79 g (22,9 mmol) DMAP in 100 ml CH₂Cl gegeben. Die entstandene weisse Suspension wurde 16 h bei 3° gerührt, dann mit 100 ml Pentan versetzt und über *Celite* abfiltriert. Das Filtrat wurde bei RT. auf 300 ml eingeengt, mit 400 ml Et₂O versetzt, 3mal mit 1N HCl, 1mal mit ges. NaHCO₃-Lsg. und 1mal mit NaCl-Lsg. gewaschen, getrocknet (MgSO₄) und bei RT. eingedampft. NC (CH₂Cl₂) ergab 72,51 g (80%) 9 als farbloses Öl. Zur Bestimmung der anal. Daten wurde 1,0 g noch einmal mittels FC (Et₂O/Pentan 1:4) gereinigt. DC (CH₂Cl₂): $R_{\rm f}$ 0,4. $[\alpha]_{\rm D}^{20} = -10,2, [\alpha]_{\rm 565}^{20} = -28,5 (c = 1,705, CH₂Cl₂). IR: 3034m, 2957s, 2930s, 2857m, 1734vs, 1498w, 1472m, 1463m, 1381s, 1302s, 1258vs, 1134s, 1082vs, 1003vs, 966m, 838vs. ¹H-NMR (400 MHz): 7,39-7,30 ($ *m*, 5 arom. H); 5,31-5,23 (*m*, CH₁); 2,42, 2,30 (*AB*von*ABX* $, <math>J_{AB} = 14,69$, $J_{AX} = 66, J_{BX} = 6,17, CH₂$); 2,42, 2,30 (*AB* von *ABX*, $J_{AB} = 14,69$, $J_{AX} = 66, J_{BX} = 6,17, CH₂$); 12,9 (*d*, J = 6,33, Me); 1,17 (*d*, J = 6,10, Me); 0,86 (*s*, *t*-Bu); 0,06 (*s*, MeSi); 0,05 (*s*, MeSi). ¹³C-NMR (100 MHz): 170,64; 170,02; 135,73; 128,58; 128,31; 128,30; 67,31; 66,43; 65,63; 44,91; 40,80; 25,78; 23,75; 19,87; 17,99; -4,51; -4,89. LSI-MS: 395,2 (28), 337,1 (38), 251,1 (11), 161,1 (35), 115,0 (22), 91,0 (100). Anal. ber. für C₂₁H₃₄O₅Si: C 63,92, H 8,69; gef.: C 64,10, H 8,49.

(3 R)-3-{{(3' R)-3'-[(tert-Butyl)diphenylsilyloxy]butanoyl}oxy}butansäure (10). Gemäss AAV3 wurden 78,9 g (0,15 mol) 8 in 650 ml MeOH hydriert (24 h). Sorgfältiges Trocknen i.HV. ergab 64,6 g (99%) reines (¹H-NMR) 10. Leicht gelbliches Öl. $[\alpha]_{20}^{D} = -2,14, [\alpha]_{365}^{20} = -3,16$ (c = 1,84, CH₂Cl₂). IR: 3073*m*, 2964*s*, 2933*s*, 2859*s*, 1959*w*, 1897*w*, 1826*w*, 1730*vs*, 1589*w*, 1472*m*, 1428*s*, 1381*s*, 1303*s*, 1179*s*, 1112*vs*, 1006*s*, 968*m*, 823*s*. ¹H-NMR (400 MHz): 7,68–7,66 (*m*, 4 arom. H); 7,44–7,35 (*m*, 6 arom. H); 5,22–5,14 (*m*, CH); 4,30–4,22 (*m*, CH); 2,63, 2,48 (*AB* von *ABX*, $J_{AB} = 15,92$, $J_{AX} = 7,76$, $J_{BX} = 6,84$, CH₂); 2,51, 2,38 (*AB* von *ABX*, $J_{AB} = 14,49$, $J_{AX} = 5,76$, $J_{BX} = 6,60$, CH₂); 1,24 (*d*, J = 6,31, Me); 1,11 (*d*, J = 6,13, Me); 1,03 (*s*, *t*-Bu). ¹³C-NMR (100 MHz): 175,93; 170,47; 135,82; 134,24; 133,87; 129,66; 129,58; 127,57; 127,50; 66,93; 66,70; 44,63; 40,32; 26,88; 23,37; 19,72; 19,15. LSI-MS: 451,1 (19), 371,1 (28), 351,1 (10), 285,1 (45), 265,1 (29), 239,1 (12), 199,1 (100), 135,0 (62). Anal. ber. für C₂₄H₃₂O₅Si: C 67,26, H 7,53; gef.: C 67,50, H 7,56.

(3 R)-3- {[(3' R)-3'-Hydroxybutanoyl]oxy}butansäure-benzylester (11). Nach AAV4, mit 70,9 g (0,18 mol) 9, 600 ml CH₂Cl₂ und 50 ml HF · Pyridin (10 min): 49,39 g (98%) reines (¹H-NMR) 11. Gelbes Öl. Zur Bestimmung der anal. Daten wurden 0,5 g mittels FC (Et₂O/Pentan 1:1) gereinigt. DC (Et₂O/Pentan 1:1) R_{f} 0,2. [α]_D²⁰ = -19,9, [α]_{B65}²⁰ = -38,6 (c = 0,935, CH₂Cl₂). IR: 3536w, 3008m, 2990m, 2935w, 1733vs, 1605w, 1498w, 1456m, 1381s, 1302s, 1265s, 1177vs, 1056s, 973m, 930w. ¹H-NMR (400 MHz): 7,39-7,31 (m, 5 arom. H); 5,39-5,31 (m, CH); 5,16-5,09 (AB, J_{AB} = 12,39, PhCH₂O); 4,18-4,11 (m, CH); 3,00 (d, J = 3,13, OH); 2,68, 2,58 (AB von ABX, J_{AB} = 15,60, J_{AX} = 7,96, J_{BX} = 5,02, CH₂); 2,40, 2,32 (AB von ABX, J_{AB} = 16,01, J_{AX} = 3,05, J_{BX} = 9,08, CH₂); 1,31 . (d, J = 6,38, Me); 1,20 (d, J = 6,30, Me). ¹³C-NMR (100 MHz): 172,02; 170,11; 135,68; 128,62; 128,40; 67,64; 66,62; 66,49; 64,42; 43,21; 40,76; 22,47; 19,94. EI-MS: 280,2 (1,1), 265,2 (0,3), 194,2 (11), 173,1 (15), 155,1 (3,5), 146,1 (4,2), 132,1 (4,6), 107,1 (66), 91,1 (100), 69,1 (31). Anal. ber. für C₁₅H₂₀O₅: C 64,27, H 7,19; gef.: C 64,03, H 7,08.

3.3. Trimere. $(3 \mathbb{R})$ -3- {{ $(3' \mathbb{R})$ -3'- { $(3' \mathbb{R})$ -3''- { $(\text{tert-Butyl)diphenylsilyloxy]butanoyl}oxy}butanoyl}oxy}butanosl}oxy}butansäure-benzylester ($ **28**). Säurechlorid-Herstellung nach <math>AAV1, mit 12,4 g (28,9 mmol) **10** in 150 ml CH₂Cl₂. Kupplung nach AAV2, bei --78° mit 5,61 g (28,9 mmol) **2** in 100 ml CH₂Cl₂. NC (CH₂Cl₂) ergab 14,3 g (80%) **28**. Farbloses Öl. DC (CH₂Cl₂): $R_f 0.2. [\alpha]_{10}^{20} = +3,03, [\alpha]_{365}^{20} = +14,8 (c = 1,19, CH₂Cl₂). IR: 3071m, 3034m, 2963s, 2933s, 2859m, 1735vs, 1589w, 1498w, 1456m, 1428s, 1382vs, 1303vs, 1265vs, 1179vs, 1105vs, 998s, 974m, 823m, 621s. ¹H-NMR (500 MHz): 7,68-7,65 (m, 4 arom. H); 7,43-7,29 (m, 11 arom. H); 5,31-5,25 (m, CH); 5,18-5,12 (m, CH); 5,11, 5,10 (<math>AB$, $J_{AB} = 12,45$, PhCH₂O); 4,29-4,27 (m, CH); 2,66, 2,52 (AB von ABX, $J_{AB} = 15,61$, $J_{AX} = 7,56$, $J_{BX} = 5,63$, CH₂); 2,51, 2,36 (AB von ABX, $J_{AB} = 15,36$, $J_{AX} = 6,76$, $J_{BX} = 6,45$, CH₂); 2,50, 2,37 (AB von ABX, $J_{AB} = 14,58$, $J_{AX} = 5,63$, $J_{BX} = 6,84$, CH₂); 1,25 (d, J = 6,33, Me); 1,19 (d, J = 6,21, Me); 1,11 (d, J = 6,12, Me); 1,03 (s, *t*-Bu). ¹³C-NMR (125 MHz): 170,32; 169,90; 169,23; 135,83; 135,81; 135,69; 134,27; 133,95; 129,66; 129,59; 128,59; 128,36; 128,34; 127,58; 127,51; 67,60; 67,16; 66,71; 66,49; 44,60; 40,89; 40,67; 26,91; 23,42; 19,81; 19,69; 19,16. LSI-MS: 627,3 (0,58), 605,3 (0,89), 547,2 (10), 527,2 (3,9), 285,1 (21), 265,1 (13), 199,1 (45), 135,0 (33), 90,9 (100). Anal. ber. für C₁₅H₄₄O₇Si: C 69,51, H 7,33; gef. C 69,52, H 7,44.

(3 R)-3-{{(3' R)-3'-{{(3'' R)-3''-[(tert-Butyl)diphenylsilyloxy}butanoyl}oxy}butanoyl}oxy}butanoyl}oxy}butanosilexxy}butanosilexy}butanosilexy}butanosilexy}butanosilexy}butanosilexy

(*m*, 4 arom. H); 7,42–7,35 (*m*, 6 arom. H); 5,27–5,22 (*m*, CH); 5,22–5,16 (*m*, CH); 4,30–4,22 (*m*, CH); 2,68–2,49 (*m*, CH₂); 2,58, 2,43 (*AB* von *ABX*, $J_{AB} = 15,19$, $J_{AX} = 7,96$, $J_{BX} = 6,20$, CH₂); 2,53, 2,37 (*AB* von *ABX*, $J_{AB} = 14,73$, $J_{AX} = 6,10$, $J_{BX} = 6,58$, CH₂); 1,27 (*d*, J = 6,24, Me); 1,22 (*d*, J = 6,28, Me); 1,12 (*d*, J = 6,13, Me); 1,03 (*s*, *t*-Bu). ¹³C-NMR (100 MHz): 170,34; 169,38; 135,84; 134,21; 133,86; 129,70; 129,62; 127,60; 127,54; 67,38; 66,86; 44,49; 41,04; 26,94; 23,40; 19,79; 19,76; 19,17. LSI-MS: 1073,2 (< 1,0, [*M* + Na][±]), 647,3 (2,6, [*M* + Cs][±]), 537,1 (52,3, [*M* + Na]⁺), 457,0 (14,2, [*M*-*t*-Bu]⁺), 285,0 (38,6), 265,0 (21,7), 199,0 (100), 139,0 (30,5), 136,0 (34,9), 135,0 (51,6), 105,0 (24,4), 91,0 (14,3), 86,9 (22,9). Anal. ber. für C₂₈H₃₈O₇Si: C 65,34, H 7,44; gef.: C 65,34, H 7,70.

(3 R)-3- {{(3' R)-3'- {[(3' R)-3"-Hydroxybutanoyl]oxy}butanoyl]oxy}butansäure-benzylester (30). Nach AAV4, mit 6,71 g (11,1 mmol) 28, 50 ml CH₂Cl₂ und 6 ml HF·Pyridin-Komplex: 6,76 g farbloses öliges (1:1)-Gemisch von (*t*-Bu)Ph₂SiF und 30 (97%). Zur Bestimmung der anal. Daten wurden 200 mg mittels FC (CH₂Cl₂) gereinigt. DC (CH₂Cl₂): R_f 0,1. $[\alpha]_{20}^{20} = -12,0, [\alpha]_{365}^{20} = -31,9$ ($c = 1,19, \text{ CH}_2\text{Cl}_2$). IR: 3533m, 3009m, 2936m, 1724vs, 1498w, 1458m, 1383m, 1167m, 1059m, 977m, 827w. ¹H-NMR (400 MHz): 7,39–7,30 (m, 5 arom. H); 5,37–5,23 (m, 2 CH); 5,12 (s, PhCH₂O); 4,22–4,14 (m, CH); 3,04 (d, J = 3,69, OH); 2,68, 2,56 (AB von ABX, $J_{AB} = 15,70, J_{AX} = 7,80, J_{BX} = 5,52, \text{ CH}_2$); 2,53, 2,43 (AB von ABX, $J_{AB} = 15,45, J_{AX} = 7,82, J_{BX} = 6,32, \text{ CH}_2$); 2,43, 2,38 (AB von ABX, $J_{AB} = 16,01, J_{AX} = 3,75, J_{BX} = 8,42, \text{ CH}_2$); 1,29 (d, J = 5,17, Me); 1,27 (d, J = 5,19, Me); 1,22 (d, J = 6,13, Me). ¹³C-NMR (100 MHz): 172,05; 169,94; 169,42; 135,70; 128,61; 128,36; 67,85; 67,53; 66,53; 64,40; 43,21; 40,82; 40,69; 22,51; 19,85; 19,82. LSI-MS: 733,1 (1,8, [M]₂), 389,0 (3,7, [M + Na]⁺), 367,1 (26,6), 137,0 (11,6), 90,9 (100), 68,9 (27,4). Anal. ber. für C₁₉H₂₆O₇: C 62,28, H 7,15; gef.: C 62,16, H 7,38.

3.4. Tetramere. (3 R)-3'-{{(3' R)-3'-{{(3'' R)-3''-{{(3'' R)-3''-{{(3'' R)-3'''-{(1 crt-Butyl)} diphenylsilyloxy} butanoyl}oxy} butanoyl}oxy}butanoyl}oxy}butanosäure-benzylester (12). Säurechlorid-Herstellung nach *AAV1*, mit 63,34 g (0,15 mol) 10 in 600 ml CH₂Cl₂. Kupplung nach *AAV2*, bei -78° mit 41,44 g (0,15 mol) 11 in 500 ml CH₂Cl₂. NC (Et₂O/Pentan 1:3) ergab 89,13 g (87%) 12. Farbloses klares Öl. DC (Et₂O/Pentan 1:3): $R_{\rm f}$ 0,2. $[\alpha]_{10}^{20}$ = +24, $[\alpha]_{365}^{20}$ = +13,8 (*c* = 0,98, CH₂Cl₂). IR: 3072*w*, 3009*w*, 2966*w*, 2933*m*, 2859*w*, 1736*v*, 1589*w*, 1473*w*, 1457*w*, 1428*m*, 1382*s*, 1303*s*, 1264*s*, 1179*v*, 1132*s*, 1104*s*, 1058*s*, 998*m*, 975*m*, 823*w*, 610*w*. ¹H-NMR (400 MHz): 7,69-7,65 (*m*, 4 arom. H); 7,44-7,29 (*m*, 11 arom. H); 5,33-5,27 (*m*, CH); 5,27-5,14 (*m*, 2 CH); 5,11 (*s*, PhCH₂O); 4,30-4,22 (*m*, CH); 2,70-2,34 (*m*, 4 CH₂); 1,27 (*d*, *J* = 6,35, Me); 1,21 (*d*, *J* = 6,35, 2 Me); 1,11 (*d*, *J* = 6,12, Me); 1,03 (*s*, *t*-Bu). ¹³C-NMR (100 MHz): 170,33; 169,91; 169,02; 169,16; 135,80; 135,68; 134,25; 133,91; 129,65; 129,58; 128,592; 128,35; 127,58; 127,50; 67,68; 67,50; 67,17; 66,70; 66,48; 44,58; 40,86; 40,78; 40,65; 26,89; 23,42; 19,81; 19,71; 19,161. LSI-MS: 713,3 (4,1), 633,2 (32), 613,2 (10), 349,1 (6), 323,1 (12), 285,1 (39), 265,1 (27), 239,1 (25), 199,1 (63), 177,1 (23), 155,1 (45), 135,1 (52), 107,1 (16), 91,0 (100), 68,9 (77). Anal. ber. für C₃₉H₅₀O₉Si: C 67,80, H 7,43; gef: C 67,92, H 7,43.

(3 R)-3-{{(3' R)-3'-{{(3' R)-3''-{(3'' R)-3'''-[(tert-Butyl)diphenylsilyloxy]butanoyl}oxy}butanoyl}butanoyl}oxybutanoyl}oxybutanoyl}oxybutanoyl}oxybutanoyl}oxybutanoyl}oxybutanoyl}oxybutanoyl}oxybutanoylioxy}butanoylioxy}butanoylioxybutanoylioxy}butanoylioxybutanoylioxy}butanoylioxybutanoylioxy}butanoylioxybutanoylioxy}butanoylioxy}butanoylioxybutanoylioxy}butanoylioxy}butanoylioxy}butanoylioxy}butanoylioxy}butanoylioxy}butanoylioxy}butanoylioxybutanoylioxy}butanoylioxybutanoylioxy}butanoylioxy}butanoylioxy}butanoylioxy}butanoylioxy}butanoylioxy}butanoylioxy}butanoylioxy}butanoylioxy}butanoylioxybutanoylioxy}butanoylioxy}butanoylioxybutanoylioxybutanoylioxybutanoylioxy}butanoylioxybutanoylioxybutanoylioxybutanoylioxybutanoylioxybutanoylioxy}butanoylioxybutanoylioxy}butanoylioxybutanoylioxy}butanoylioxybutanoylioxybutanoylioxyb

 $(3 \text{ R}) - 3 - \{\{(3^{\circ} \text{ R}) - 3^{\circ} - \{(3^{\circ} \text{ R}) - 3^{\circ \circ} - \{(3^{\circ} \text{ R}) - 3^{\circ \circ} - \{(3^{\circ} \text{ R}) - 3^{\circ \circ} - ((3^{\circ} \text{ R}) - 3^{\circ \circ})\}$ butanoyl]oxy}butanoyl

3.5. Hexamere. α -Benzyl- ω -[(tert-butyl)diphenylsilyloxy]hexa[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (31). Säurechlorid-Herstellung nach AAVI, aus 5,41 g (10,5 mmol) **29** in 100 ml CH₂Cl₂. Kupplung nach AAV2, bei -78° mit 6,57 g **30**/TBDPS-F 1:1 (je 10,5 mmol) in 100 ml CH₂Cl₂. NC (Et₂O/Pentan 1:1,5) ergab 6,16 g (68%) **31.** Farbloses Öl. DC (Et₂O/Pentan 1:1,5): R_f 0,2. [α]₁₀²⁰ = +2,2, [α]₃₆₅²⁰ = +13,0 (c = 1,05, CH₂Cl₂). IR: 2985w, 2943w, 2858w, 1738vs, 1457w, 1427w, 1382m, 1305m, 1265vs, 1179s, 1105m, 1059m, 998w. ¹H-NMR (400 MHz): 7,68-7,65 (m, 4 arom. H); 7,44-7,29 (m, 11 arom. H); 5,32-5,14 (m, 5 CH): 5,12 (s, PhCH₂O); 4,30-4,22 (m, CH); 2,71-2,32 (m, 6 CH₂); 1,28 (d, J = 6,33, Me); 1,26 (d, J = 6,38, Me); 1,24 (d, J = 6,36, Me); 1,23 (d, J = 6,34, Me); 1,21 (d, J = 6,31, Me); 1,11 (d, J = 6,11, Me); 1,03 (s, t-Bu). ¹³C-NMR (100 MHz): 170,31; 169,91; 169,20; 169,19; 169,14; 135,83; 135,81; 135,72; 134,28; 133,94; 129,67; 129,59; 128,60; 128,35; 127,59; 127,51; 67,70; 67,60; 67,53; (7,18; 66,72; 66,49; 44,60; 40,88; 40,80; 40,68; 26,91; 23,42; 19,81; 19,76; 19,73; 19,16. LSI-MS: 885,3 (13,1, (M + Na - H]⁺), 863,3 (4,4, M^+), 805,2 (44,0, [M - t-Bu]⁺), 785,3 (12,1), 285,1 (21,0), 199,1 (51,4), 155,1 (67,9), 135,1 (34,9), 91,0 (100), 87,0 (15,5). Anal. ber. für C₄₇H₆₂O₁₃Si: C 65,41, H 7,24; gef.: C 66,06, H 7,16.

 α -Hydro- ω -[(tert-butyl)diphenylsilyloxy]hexa[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (32). Nach AAV3 wurden 2,99 g (3,45 mmol) 31 in 150 ml MeOH hydriert: 2,24 g (85%) 32. Zähes Öl. [α]_D²⁰ = +0,4, [α]₃₆₅²⁰ = +3,0 (c = 0,60, CH₂Cl₂). IR: 2982w, 2933w, 2859w, 1736vs, 1428w, 1383m, 1305s, 1264m, 1179s, 1104s, 1059s, 998w. ¹H-NMR (400 MHz): 7,68–7,65 (m, 4 arom. H); 7,44–7,35 (m, 6 arom. H); 5,33–5,14 (m, 5 CH); 4,29–4,22 (m, CH); 2,68–2,35 (m, 6 CH₂); 1,29 (d, J = 6,32, Me); 1,27 (d, J = 6,31, 2 Me); 1,24 (d, J = 6,32, Me); 1,22 (d, J = 6,31, Me); 1,11 (d, J = 6,12, Me); 1,03 (s, t-Bu). ¹³C-NMR (100 MHz): 170,52; 169,68; 169,45; 169,20; 135,83; 135,81; 134,25; 133,93; 129,68; 129,61; 127,60; 127,53; 68,04; 67,80; 67,63; 67,28; 66,72; 44,62; 40,90; 26,91; 23,42; 19,95; 19,79; 19,74; 19,69; 19,17. LSI-MS: 1611,7 (4,4, [M + 3 Na + H]⁺), 817,1 (24,5, [M + 2 Na – H]⁺), 795,1 (100, [M + Na]⁺), 715,1 (2,4, [M – t-Bu]⁺), 285,0 (14,8), 239,0 (11,8), 199,0 (59,7). Anal. ber. für C₄₀H₅₆O₁₃Si: C 62,16, H 7,30; gef.: C 62,03, H 7,27.

a-Benzyl-w-hydroxyhexa[(R)*-oxy(3-methyl-1-oxopropan-1,3-diyl)]* (33). Nach *AAV4*, mit 2,99 g (3,45 mmol) 31, 15 ml CH₂Cl₂ und 2,0 ml HF ·Pyridin-Komplex: 2,92 g (*t*-Bu)Ph₂SiF/33 (96%) 1:1. Weisser Feststoff. Zur Bestimmung der anal. Daten wurden 590 mg mittels FC (Et₂O/Pentan 1:1) gereinigt. DC (Et₂O/Pentan 1:1): R_f 0,1. Schmp. 38,0–39,0°. $[a]_{20}^{20} = -6.6$, $[a]_{365}^{20} = -13,0$ (c = 1,08, CH₂Cl₂). IR: 2985w, 1738vs, 1603w, 1458w, 1382w, 1304m, 1179m, 1057m, 975w. ¹H-NMR (400 MHz): 7,39–7,30 (m, 5 arom. H); 5,35–5,19 (m, 5 CH); 5,12 (*s*, PhCH₂O); 4,20–4,16 (*m*, CH); 3,09 (*d*, J = 3,36, OH); 2,72–2,25 (*m*, 6 CH₂); 1,30 (*d*, J = 6,39, Me); 1,28 (*d*, J = 6,34, Me); 1,27 (*d*, J = 6,32, Me); 1,27 (*d*, J = 6,28, Me); 1,25 (*d*, J = 6,33, Me); 1,22 (*d*, J = 6,33, Me): ¹³C-NMR (100 MHz): 172,01; 169,92; 169,42; 169,20; 135,71; 128,60; 128,35; 67,75; 67,71; 67,64; 67,62; 67,54; 66,49; 64,40; 43,26; 40,80; 40,68; 22,53; 19,88; 19,81; 19,77; 19,73. LSI-MS: 757,1 (1,7, $[M + Cs]^+$), 647,2 (3,4, $[M + Na]^+$), 625,2 (36,8, M^+), 173,1 (22,0), 155,1 (59,7), 91,0 (100), 86,9 (23,8). Anal. ber. für C₃₁H₄₄O₁₃: C 59,60, H 7,10; gef.: C 59,62, H 7,40.

3.6. Octamere. α -Benzyl- ω -[(tert-butyl)diphenylsilyloxyJocta[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (15). Säurechlorid-Herstellung nach AAVI, mit 36,5 g (60,7 mmol) 13 in 300 ml CH₂Cl₂. Kupplung nach AAV2, bei -78° mit 42,61 g 14/(t-Bu)Ph₂SiF 1:1 (je 59,9 mmol) in 400 ml CH₂Cl₂. NC (Et₂O/Pentan 1:1) ergab 49,53 g (80%) 15. Farbloses Öl. DC (Et₂O/Pentan 1:1): $R_{\rm f}$ 0,2. $[\alpha]_{\rm D}^{20} = +2.0, [\alpha]_{365}^{20} = +12,6 (c = 0,545, CH₂Cl₂). IR: 3032w, 2985w, 2935w, 2859w, 1728vs, 1458w, 1428w, 1383s, 1304vs, 1177vs, 1135s, 1103vs, 1057vs, 978w. ¹H-NMR (400 MHz): 7,68-7,66 (m, 4 arom. H); 7,44-7,30 (m, 11 arom. H); 5,34-5,14 (m, 7 CH); 5,12 (s, PhCH₂O); 4,30-4,22 (m, CH); 2,71-2,34 (m, 8 CH₂); 1,28 (d, J = 6,26, Me); 1,27 (d, J = 6,22, Me); 1,26 (d, J = 6,71, 2 Me); 1,24 (d, J = 6,63, Me); 1,21 (d, J = 6,13, Me); 1,11 (d, J = 6,12, Me); 1,03 (s, t-Bu). ¹³C-NMR (100 MHz): 170,33; 169,92; 169,21; 169,18; 169,15; 135,82; 135,81; 135,69; 134,26; 133,91; 129,66; 129,59; 128,60; 128,35; 127,59; 127,51; 67,69; 67,60; 67,53; 67,18; 66,71; 66,49; 44,59; 40,87; 40,79; 40,67; 26,90; 23,42; 19,82; 19,77; 19,73; 19,16. LSI-MS: 1167,4 (0,62), 1047,5 (0,23), 977,4 (0,34), 285,1 (19), 239,1 (15), 199,1 (50), 155,1 (68). Anal. ber. für C₅₅H₇₄O₁₇Si: C 63,81, H 7,20; gef.: C 63,94, H 7,29.$

 α -Hydro- ω -[(tert-butyl)diphenylsilyloxy Jocta[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (16). Gemäss AAV3 wurden 10,71 g (10,3 mmol) 15 in 200 ml MeOH hydriert: 9,54 g (98%) reines (¹H-NMR) 16. Farbloses Öl. $[\alpha]_{2D}^{20} = -1,7, [\alpha]_{365}^{20} = +2,6 (c = 0,755, CH_2Cl_2).$ IR: 3032w, 2986w, 2935w, 2859w, 1736vs, 1459w, 1428w, 1383m, 1305s, 1178vs, 1134m, 1104s, 1058s. ¹H-NMR (400 MH2): 7,69–7,65 (m, 4 arom. H); 7,44–7,35 (m, 6 arom. H); 5,37–5,14 (m, 7 CH); 4,29–4,22 (m, CH); 2,67–2,35 (m, 8 CH₂); 1,30 (d, J = 6,33, Me); 1,27 (d, J = 6,30, 2 Me); 1,27 (d, J = 6,31, Me); 1,26 (d, J = 6,32, Me); 1,26 (d, J = 6,31, Me); 1,26 (d, J = 6,31, Me); 1,26 (d, J = 6,31, Me); 1,26 (d, J = 6,32, Me); 1,26 (d, J = 6,31, Me); 1,26 (d, J = 6,31, Me); 1,26 (d, J = 6,32, Me); 1,26 (d, J = 6,31, Me); 1,26 (d, J = 6,31, Me); 1,26 (d, J = 6,31, Me); 1,26 (d, J = 6,32, Me); 1,26 (d, J = 6,31, Me); 1,26 (d, J = 6,32, Me); 1,26 (d, J = 6,31, Me); 1,27 (d, J = 6,32, Me); 1,27 (d, J = 6,34, Me); 1,26 (d, J = 6,31, Me); 1,26 (d, J = 6,32, Me); 1,27 (d, J = 6,31, Me); 1,21 (d, J = 6,32, Me); 1,23 (d, J = 6,31, Me); 1,21 (d, J = 6,31, ME); 1,30 (d, J = 6,31 (d, J = 6,31 (d, J = 6,31 (d); 1,33,00 (d); 12,50 (d; 13,90 (d; 12,751; 68,11; 67,77; 67,69; 67,58; 67,23; 66,71; 44,59; 40,89; 40,80; 40,46; 26,90; 23,42; 19,95; 19,77; 19,73; 19,66; 19,16. LSI-MS: 1077,0 (1,4), 967,1 (29), 887,1 (5), 431,0 (4,0), 345,0 (10), 325,0 (13), 283,0 (26), 241,0 (30), 199,0 (56), 155,0 (67),

α-Benzyl-ω-hydroxyocta[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (17). Nach AAV4, mit 10,98 g (10,6 mmol) 15, 60 ml CH₂Cl₂ und 6 ml HF ·Pyridin: 11,10 g wachsartiges, leicht rötliches (1:1)-Gemisch (*t*-Bu)Ph₂SiF/17 (99%). Zur Bestimmung der anal. Daten wurden 190 mg mittels FC (Et₂O/Pentan 1:1, dann Et₂O/CH₂Cl₂ 1:1) gereinigt. DC (Et₂O/Pentan 1:1): $R_{\rm f}$ 0,1. Schmp. 69,5–70,0°. $[\alpha]_{10}^{20} = -5,8, [\alpha]_{365}^{20} = -7,7$ (*c* = 0,855, CH₂Cl₂). IR: 3542w, 2985w, 2936w, 1738vs, 1457w, 1383m, 1305s, 1178vs, 1136m, 1102m, 1057s. ¹H-NMR (400 MHz): 7,39–7,30 (*m*, 5 arom. H); 5,35–5,19 (*m*, 7 CH); 5,12 (*s*, PhCH₂O); 4,23–4,14 (*m*, CH); 3,10 (*d*, *J* = 6,32, Me); 1,27 (*d*, *J* = 6,30, 2 Me); 1,24 (*d*, *J* = 6,33, Me); 1,22 (*d*, *J* = 6,31, Me): ¹³C-NMR (100 MHz): 172,03; 169,92; 169,43; 169,18; 169,17; 135,69; 128,60; 128,35; 67,75; 67,70; 67,23; 67,54; 66,49; 64,38; 43,23; 40,79; 40,67; 22,51; 19,89; 19,81; 19,77; 19,73. LSI-MS: 929,0 (2,5), 819,1 (25), 797,1 (45), 711,1 (2.9), 603,0 (1.5), 517,0 (2,7), 431,0 (6), 345,0 (9), 259,0 (11), 241,0 (12), 177,0 (5), 173,0 (26), 155,0 (70), 137,0 (30), 106,9 (17), 90.9 (88), 68,8 (100). Anal. ber. für C₃₉H₅₆O₁₇: C 58,78, H 7,08; gef.: C 58,68, H 6,81.

 α -Hydro- ω -hydroxyocta[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (39). Nach AAV3 wurden 6,98 g 17/ (t-Bu)Ph₂SiF 1:1 (je 6,61 mmol) in 130 ml MeOH hydriert. Nach Aufarbeiten und Trocknen i.HV. resultierten 6,54 g Rohprodukt. Die Reinigung erfolgte durch Digerieren in 150 ml Pentan: 4,5 g (96%) 39. Weisser Feststoff. ¹H-NMR (300 MHz): 5,3–5,15 (*m*, 7 CH); 4,3–4,2 (*m*, CH); 2,75–2,3 (*m*, 8 CH₂); 1,3–1,1 (*m*, 8 Me); entspricht [23].

3.7. Dodecamere. α -Benzyl- ω -[(tert-butyl)diphenylsilyloxy]dodeca[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (34). Säurechlorid-Herstellung nach AAV1, mit 2,04 g (2,64 mmol) 32 in 80 ml CH₂Cl₂. Kupplung nach AAV2, mit 2,33 g 33/(t-Bu)Ph₂SiF 1:1 (je 2,64 mmol) in 100 ml CH₂Cl₂ (14 h). FC (Et₂O/CH₂Cl₂ 1:7) ergab 1,83 g (50%) 34. Weisser Feststoff. DC (Et₂O/CH₂Cl₂ 1:7): $R_{\rm f}$ 0,5 Schmp. 83,0-84,0°. [α]₁₀²⁰ = +1,9, [α]₃₀³⁰ = +29,2 (c = 1,09, CH₂Cl₂). IR: 2986w, 2936w, 1734vs, 1457w, 1428w, 1383s, 1304s, 1265s, 1189vs, 1135m, 1103s, 1059s, 978w. ¹H-NMR (400 MHz): 7,68-7,65 (m, 4 arom. H); 7,44-7,30 (m, 11 arom. H); 5,34-5,14 (m, 11 CH); 5,12 (s, PhCH₂O); 4,30-4,22 (m, CH); 2,71-2,33 (m, 12 CH₂); 1,29-1,25 (m, 8 Me); 1,24 (d, J = 6,37, 2 Me); 1,13 (d, J = 6,30, Me); 1,11 (d, J = 6,12, Me); 1,29,60; 128,61; 128,35; 127,59; 127,52; 67,71; 67,62; 67,54; 67,19; 66,73; 66,49; 44,61; 40,89; 40,81; 40,69; 26,92; 23,43; 19,82; 19,78; 19,74; 19,17. LSI-MS: 1511,6 (1,4, [M + Cs]⁺), 1402,0 (2,2, [M + Na]⁺), 1321,5 (1,3, [M - t-Bu]⁺), 285,1 (15,0), 239,1 (13,9), 199,0 (72,1), 86,9 (12,6), 68,9 (100). Anal. ber. für C₇₁H₉₈O₂₅Si: C 61,81, H 7,16; gef.: C 61,70, H 7,22.

α-Benzyl-ω-hydroxydodeca[(R)-oxy(3-methyl-l-oxopropan-1,3-diyl)] (**37**). Nach AAV4, mit 1,35 g (979 μmol) **34**, 40 ml CH₂Cl₂ und 5 ml HF · Pyridin: 1,18 g (1:1)-Gemisch (t-Bu)Ph₂SiF/**37** (86%) als weisser Feststoff. Zur Bestimmung der anal. Daten wurden 250 mg mittels FC (Et₂O/CH₂Cl₂ 1:3) gereinigt. DC (Et₂O/CH₂Cl₂ 1:7): $R_{\rm f}$ 0,2. Schmp. 97,0–98,0°. $[\alpha]_{\rm fD}^{20} = -3,1, [\alpha]_{\rm fd5}^{20} = -1,0$ (c = 1,26, CH₂Cl₂). IR: 2988w, 2936w, 1738vs, 1458w, 1383w, 1306m, 1266m, 1179s, 1109w, 1056m, 978w. ¹H-NMR (400 MHz): 7,39–7,30 (m, 5 arom. H); 5,35–5,20 (m, 11 CH); 5,12 (s, PhCH₂O); 4,23–4,14 (m, CH); 3,09 (d, J = 3,85, OH); 2,78–2,33 (m, 12 CH₂); 1,31 (d, J = 6,33, Me); 1,28 (d, J = 6,24, 2 Me); 1,28 (d, J = 6,30, Me); 1,27 (d, J = 6,31, 2 Me); 1,27 (d, J = 6,28, Me); 1,27 (d, J = 6,20, 2 Me); 1,25 (d, J = 6,34, Me); 1,22 (d, J = 6,31, Me). ¹³C-NMR (100 MHz): 172,00; 169,91; 169,42; 169,20; 169,17; 169,16; 135,72; 128,60; 128,35; 67,75; 67,67; 67,65; 65,48; 64,39; 43,27; 40,80; 40,68; 22,54; 19,89; 19,81; 19,77; 19,73. LSI-MS: 1273,1 (< 1,0, [M + Cs]⁺), 1163,3 (1,7, [M + Na]⁺), 1141,2 (2,4, [M + H]⁺), 173,0 (10,2), 147,0 (15,5), 136,0 (16,7), 95,0 (12,0), 90,9 (54,4), 86,9 (12,6), 80,9 (13,5), 78,9 (10,8), 76,9 (16,5), 72,9 (28,6), 68,9 (100). Anal. ber. für C₅₅H₈₀O₂₅: C 57,89, H 7,07; gef.: C 57,97, H 6,86.

 α -Hydro- ω -hydroxydodeca[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (40). Nach AAV3 wurden 900 mg 37/ (t-Bu)Ph₂SiF 1:1 (je 644 µmol) in 40 ml CF₃CH₂OH hydriert: 810 mg Rohprodukt. Die Reinigung erfolgte durch Digerieren in 50 ml Pentan: 620 mg (92%) 40. Weisser Feststoff. Schmp. 128,0–129,0°. [α] $_{20}^{20} = -4,5, [<math>\alpha$] $_{365}^{20} = -7,7$ ($c = 0,89, CH_2Cl_2$). IR: 2936w, 1738vs, 1457w, 1383m, 1305m, 1266m, 1179s, 1101w, 1058m, 980w. ¹H-NMR (400 MHz): 5,35–5,22 (m, 11 CH); 4,23–4,17 (m, CH); 4,17–4,09 (br., OH); 2,76–2,36 (m, 12 CH₂); 1,30 (d, J = 6,37, 3 Me); 1,28 (d, J = 6,29, 7 Me); 1,22 (d, J = 6,30, 2 Me). ¹³C-NMR (100 MHz): 172,06; 169,59; 169,54; 169,51; 169,38; 169,31; 169,27; 68,25; 67,94; 67,84; 67,78; 67,67; 67,56; 64,39; 43,25; 41,33; 40,86; 40,81; 22,57; 19,98; 19,89; 19,81; 19,78; 19,72. LSI-MS: 1089,2 (2,8, [M + K]⁺), 1073,2 (78,5, [M + Na]⁺), 1051,2 (2,2, M^+), 173,0 (12,3), 86,9 (19,1), 68,9 (100). Anal. ber. für C₄₈H₇₄O₂₅: C 55,31, H 7,30; gef.: C 55,25, H 7,07.

3.8. Hexadecamere. α -Benzyl- ω -[(tert-butyl)diphenylsilyloxy]hexadeca[(R)-oxy(3-methyl-1-oxopropan-1,3diyl)] (18). Säurechlorid-Herstellung nach AAV1, mit 9,54 g (10,1 mmol) 16 in 200 ml CH₂Cl₂. Kupplung nach AAV2, bei -78° mit 11,10 g 17/(t-Bu)Ph₂SiF 1:1 (je 10,5 mmol) in 250 ml CH₂Cl₂. FC (Et₂O/CH₂Cl₂ 1:6 oder 1:8) ergab 12,84 g (74%) 18. Weisser Feststoff. DC (Et₂O/CH₂Cl₂ 1:8): R_f 0,2. Schmp. 112,5-113,0°. [α]₂₀²⁰ = +0,50, [α]₃₆₅²⁰ = +12,5 (c = 0,805, CH₂Cl₂). IR: 3010w, 2985m, 2936w, 2859w, 1739vvs, 1458m, 1428m, 1383s, 1304vs, 1265s, 1179vs, 1103s, 1060vs, 979m, 823w. ¹H-NMR (400 MHz): 7,68-7,66 (m, 4 arom. H); 7,44-7,31 (m, 11 arom. H); 5,34–5,14 (*m*, 15 CH); 5,12 (*s*, PhCH₂O); 4,30–4,22 (*m*, CH); 2,71–2,34 (*m*, 16 CH₂); 1,29–1,21 (*m*, 15 Me); 1,11 (*d*, J = 6,12, Me); 1,03 (*s*, *t*-Bu). ¹³C-NMR (100 MHz): 170,32; 169,91; 169,20; 169,14; 135,82; 135,80; 135,69; 134,25; 133,91; 129,66; 129,58; 128,60; 128,35; 127,58; 127,51; 67,69; 6⁷,61; 6⁷,52; 6⁷,18; 66,71; 66,48; 44,59; 40,87; 40,79; 40,66; 26,90; 23,42; 19,81; 19,77; 19,73; 19,16. LSI-MS: 1856,5 (2,0), 1746,5 (2,5), 1724,4 (3,5), 1666,0 (2,8), 517,2 (3,0), 327,1 (14), 241,1 (30), 199,1 (36), 155,1 (75). Anal. ber. für C₈₇H₁₂₂O₃₃Si: C 60,61, H 7,13; gef.: C 60,49, H 7,03.

 α -Hydro- ω -[(tert-butyl)diphenylsilyloxy]hexadexa[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (19). Gemäss AAV3 wurden 5,08 g (2,95 mmol) 18 in 40 ml CF₃CH₂OH hydriert: 4,69 g (97%) reines (¹H-NMR) 19. Weisser Feststoff. Schmp. 117,5–118,5°. [α]₂₀²⁰ = -0,83, [α]₃₆₅²³ = +7,88 (c = 1,25, CH₂Cl₂). IR: 3036w, 2985w, 2936w, 2923w, 1738vs, 1459w, 1383m, 1305s, 1265m, 1179s, 1135m, 1102m, 1057s, 980w. ¹H-NMR (400 MH2): 7,68–7,66 (m, 4 arom. H); 7,44–7,35 (m, 6 arom. H); 5,37–5,14 (m, 15 CH); 4,29–4,22 (m, CH); 2,68–2,34 (m, 16 CH₂); 1,30 (d, J = 6,37, Me); 1,28–1,26 (m, 12 Me); 1,24 (d, J = 6,34, Me); 1,22 (d, J = 6,32, Me); 1,11 (d, J = 6,11, Me); 1,03 (s, *t*-Bu). ¹³C-NMR (100 MHz): 172,24; 170,34; 169,75; 169,42; 169,34; 169,27; 169,23; 169,18; 169,16; 169,14; 135,83; 135,81; 134,27; 133,94; 129,67; 129,60; 127,59; 127,52; 68,11; 67,80; 67,71; 67,64; 67,55; 67,20; 66,72; 44,60; 40,90; 40,81; 40,57; 26,91; 23,43; 19,97; 19,77; 19,74; 19,67; 19,17. LSI-MS: 1656,0 (3,9), 1575,6 (0,26), 517,0 (1,9), 431,0 (3,7), 327,0 (9,5), 241,0 (23), 199,0 (32), 155,0 (95). Anal. ber. für C₈₀H₁₁₆O₃₃Si: C 58,81, H 7,16; gef.: C 58,93, H 7,21.

a-Benzyl-w-hydroxyhexadeca[(R)-*oxy*(3-methyl-1-oxopropan-1,3-diyl)] (20). Nach AAV4, mit 5,30 g (3,07 mmol) 18, 30 ml CH₂Cl₂ und 3,5 ml HF · Pyridin. Zweimal Digerieren in je 100 ml Pentan und Abzentrifugieren ergaben 4,47 g (98%) 20. Weisser Feststoff. Schmp. 123,0-124,0°. $[x]_{20}^{20} = -3,02, [x]_{365}^{20} = +2,44$ (c = 0,86, CH₂Cl₂). IR: 3542w (br.), 3010w, 2987m, 2937w, 1734vs, 1458m, 1383s, 1305vs, 1266s, 1179vs, 1135s, 1101s, 1059vs, 978m, 927w. ¹H-NMR (500 MHz): 7,38-7,31 (m, 5 arom. H); 5,34-5,20 (m, 15 CH); 5,12 (s, PhCH₂O); 4,21-4,15 (m, CH); 3,09 (s, OH); 2,71-2,37 (m, 16 CH₂); 1,31 (d, J = 6,35, Me); 1,29-1,26 (m, 13 Me); 1,24 (d, J = 6,33, Me); 1,22 (d, J = 6,31, Me). ¹³C-NMR (125 MHz): 172,03; 169,91; 169,42; 169,20; 169,17; 169,15; 135,72; 128,60; 128,35; 67,56; 67,70; 67,62; 67,54; 66,49; 64,39; 43,26; 40,81; 40,68; 22,53; 19,89; 19,82; 19,77; 19,73. LSI-MS: 1617,4 (0,15), 1485,6 (0,53), 431,0 (2,1), 241,0 (12), 173,0 (10), 155,0 (70). Anal. ber. für C₇₁H₁₀₄O₃₃: C 57,40, H 7,06; gef.: C 57,43, H 7,04.

 α -Hydro- ω -hydroxyhexadeca[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (41). Nach AAV3 wurden 3,38 g (2,28 mmol) 20 in 160 ml CF₃CH₂OH hydriert: 3,03 g (96%) 41. Weisser Feststoff. ¹H-NMR (300 MHz): 5,3–5,15 (*m*, 15 CH); 4,25–4,15 (*m*, CH); 2,7–2,4 (*m*, 16 CH₂); 1,3–1,2 (*m*, 16 Me); entspricht [23].

3.9. Tetracosamere. α -Benzyl- ω -[(tert-butyl)diphenylsilyloxy]tetracosa[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (35). Säurechlorid-Herstellung nach AAV1, mit 1,63 g (1,00 mmol) 19 in 20 ml CH₂Cl₂. Das Säurechlorid wurde 12 h bei 10⁻⁴ mbar getrocknet. Kupplung nach AAV2, bei -78° mit 1,06 g 17/(t-Bu)Ph₂SiF 1:1 (je 1,00 mmol) in 20 ml CH₂Cl₂ (Aufarbeitung ohne Et₂O). FC (CH₂Cl₂/Et₂O 7:2) ergab 2,01 g (83%) 35. Weisser Festsoff. DC (Et₂O/CH₂Cl₂ 2:7): R_f 0,2. Schmp. 139,5–140,0°. [α]₁₀²⁰ = +0,11, [α]₃₀³⁶ = +12,4 (α = 0,89, CH₂Cl₂). IR: 3610w, 2987w, 2936w, 1738vs, 1458w, 1383m, 1305s, 1179vs, 1136m, 1103s, 1059s. ¹H-NMR (400 MHz): 7,68–7,66 (m, 4 arom. H); 7,44–7,32 (m, 11 arom. H); 5,34–5,15 (m, 23 CH); 5,12 (s, PhCH₂O); 4,28–4,23 (m, CH); 2,72–2,34 (m, CH₂); 2,60, 2,8 (AB von ABX, J_{AB} = 15,51, J_{AX} = 7,38, J_{BX} = 5,82, CH₂); 1,29–1,22 (m, 6 Me); 1,27 (d, J = 6,32, 16 Me); 1,22 (d, J = 6,30, Me); 1,11 (d, J = 6,13, Me); 1,03 (s, t-Bu). ¹³C-NMR (100 MHz): 170,32; 169,91; 169,20; 169,15; 135,82; 135,80; 135,70; 134,25; 133,91; 129,66; 129,59; 128,60; 128,35; 127,83; 127,51; 67,91; 67,61; 67,53; 67,118; 66,71; 66,49; 44,59; 40,87; 40,79; 40,67; 26,90; 23,42; 19,81; 19,79; 19,73; 19,16. LSI-MS: 2433,9 (60, [M + Na - H]⁺). Anal. ber. für C₁₁₉H₁₇₀O₄₉Si: C 59,24, H 7,10; gef.: C 59,37, H 6,82.

α-Benzyl-ω-hydroxytetracosa[(R)-oxy(3-methyl-1-oxopropan-1,3-diy!)] (38). Nach AAV4, mit 1,88 g (779 μmol) 35, 20 ml CH₂Cl₂ und 2,5 ml HF · Pyridin (Aufarbeiten mit CH₂Cl₂ statt Et₂O): 1,84 g (1:1)-Gemisch (*t*-Bu)Ph₂SiF/38 (97%) als weisser Feststoff. Zur Bestimmung der anal. Daten wurden 270 mg 3mal aus CH₂Cl₂/Pentan umgefällt. Schmp. 144,0-145,0°. [α]_D²⁰ = -2,2, [α]₃₆₅²⁰ = +5,3 (c = 1,13, CH₂Cl₂). IR: 3011w, 2986m, 2937w, 2878w, 1738vs, 1458w, 1383s, 1306vs, 1177vs, 1135s, 1101s, 1059vs, 979m. ¹H-NMR (400 MHz): 7,38–7,30 (m, 5 arom. H); 5,35–5,20 (m, 23 CH); 5,12 (s, PhCH₂O); 4,22–4,15 (m, CH); 3,08 (d, J = 3,80, OH); 2,74–2,36 (m, CH₂); 2,60, 2,47 (*AB* von *ABX*, *J_{AB}* = 15,51, *J_{AX}* = 7,47, *J_{BX}* = 5,80); 1,29–1,26 (m, 6 Me); 1,31 (d, J = 6,35, Me); 1,27 (d, J = 6,33, 15 Me); 1,24 (d, J = 6,32, Me); 1,22 (d, J = 6,25, Me). ¹³C-NMR (100 MHz): 172,01; 169,91; 169,42; 169,19; 169,15; 135,72; 128,60; 128,35; 67,70; 67,70; 67,63; 67,75; 66,49; 64,39; 43,27; 40,81; 40,68; 22,54; 19,89; 19,82; 19,78. LSI-MS: 2306,5 (87, [M + Cs]⁺), 212,4 (8,4, [M + K]⁺), 2196,7 (100, [M + Na]⁺), 2174,5 (36, M⁺). Anal. ber. für C₁₀₃H₁₅₂O₄₉: C 56,90, H 7,05; gef.: C 57,14, H 6,88.

 α -Hydro- ω -hydroxytetracosa[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (42). Nach AAV3 wurden 1,57 g 38/ (t-Bu)Ph₂SiF 1:1 (je 646 µmol) in 70 ml CF₃CH₂OH hydriert. Zweimal Digerieren in je 200 ml Et₂O und Trocknen bei 10⁻⁵ mbar ergaben 1,25 g (93%) 42. Weisser Feststoff. Schmp. 155,0–156,5°. IR: 3549w (br.), 3011w, 2986m, 2936w, 2878w, 1744vs, 1458w, 1383vs, 1306vs, 1178vs, 1135s, 1101s, 1059vs, 979m. ¹H-NMR (400 MHz): 5,36–5,20 (m, 23 CH); 4,22–4,15 (m, CH); 2,68–2,36 (m, CH₂); 2,60, 2,47 (*AB* von *ABX*, $J_{AB} = 15,51$, $J_{AX} = 7,41$, $J_{BX} = 5,87$, CH₂); 1,31 (*d*, J = 6,36, Me); 1,30 (*d*, J = 6,38, Me); 1,28 (*d*, J = 6,29, 2 Me); 1,27 (*d*, J = 6,32, 19 Me); 1,21 (*d*, J = 6,31, Me). ¹³C-NMR (100 MHz): 172,03; 169,79; 169,44; 169,36; 169,28; 169,25; 169,18; 68,16; 67,89; 67,82; 67,77; 67,73; 67,65; 67,56; 64,41; 43,26; 40,92; 40,82; 40,62; 22,54; 20,00; 19,90; 19,78; 19,67. LSI-MS: 2120,6 (1,4, [M + K - 3H]⁺), 2105,0 (26, [M + Na - 2H]⁺), 2083,1 (15, [M - H]⁺). Anal. ber. für C₉₆H₁₄₆O₄₉·1 H₂O: C 54,85, H 7,10; gef.: C 54,73, H 7,15.

3.10. Dotriacontamere. α -Benzyl- ω -[(tert-butyl)diphenylsilyloxy]dotriaconta[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (21). Säurechlorid-Herstellung nach AAV1, mit 4,50 g (2,75 mmol) 19 in 50 ml CH₂Cl₂. Das Säurechlorid wurde 12 h bei 10⁻⁶ mbar getrocknet. Kupplung nach AAV2, bei -78° mit 4,16 (2,80 mmol) 20 in 40 ml CH₂Cl₂ (Aufarbeitung ohne Et₂O). FC (CH₂Cl₂/Et₂O 7:2) ergab 5,70 g (67%) 21. Weisser Feststoff. DC (Et₂O/CH₂Cl₂ 1:4): R_f 0,2. Schmp. 129,0–130,0°. $[\alpha]_{D}^{20} = \pm 0,0$, $[\alpha]_{365}^{20} = \pm 12,3$ (c = 0,925, CH₂Cl₂). IR: 3010w, 2987w, 2935w, 1738vs, 1456w, 1383m, 1305s, 1265s, 1179vs, 1134m, 1102s, 1057s, 978w, 821w. ¹H-NMR (400 MHz): 7,68–7,66 (m, 4 arom. H); 7,43–7,31 (m, 11 arom. H); 5,33–5,21 (m, 30 CH); 5,21–5,15 (m, CH); 5,12 (s, PhCH₂O); 4,28–4,24 (m, CH); 2,71–2,35 (m, 17 CH₂); 2,60, 2,47 (15 AB von ABX, $J_{AB} = 15,50, J_{AX} = 7,42, J_{BX} = 5,79, 15$ CH₂); 1,29–1,26 (m, 8 Me); 1,27 (d, J = 6,31, 20 Me); 1,24 (d, J = 6,33, Me); 1,22 (d, J = 6,30, Me); 1,11 (d, J = 6,12, Me). ¹³C-NMR (125 MHz): 170,32; 169,91; 169,20; 169,15; 135,83; 135,81; 135,72; 134,28; 129,67; 129,59; 128,61; 128,35; 127,59; 127,51; 67,70; 67,62; 67,54; 67,19; 66,72; 66,49; 44,60; 40,88; 40,81; 40,68; 26,91; 23,43; 19,82; 19,78; 19,74; 19,17. LSI-MS: 3233,7 (23), 3439,7 (19), 3123,9 (100), 3101,8 (69), 3044,4 (14). Anal. ber. für C₁₅₁H₂₁₈O₆₅Si: C 58,48, H 7,08; gef.: C 58,45, H 7,15.

 α -Hydro- ω -[(tert-butyl)diphenylsilyloxy]dotriaconta[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (22). Nach AAV3 wurden 2,55 g (822 µmol) 21 in 40 ml CF₃CH₂OH hydriert: 2,36 g (95%) 22. Weisser Feststoff. Schmp. 128,5–130,0°. [α]₁₀²⁰ = -0,6, [α]₃₀³⁵ = +9,7 (c = 0,745, CH₂Cl₂O. IR: 3542 (br.), 3010w, 2986m, 2937w, 2879w, 1743vs, 1458m, 1383s, 1307vs, 1266s, 1179vs, 1136s, 1101s, 1056vs, 980m, 823w. ¹H-NMR (400 MH2): 7,68–7,65 (m, 4 arom. H); 7,44–7,35 (m, 6 arom. H); 5,30–5,22 (m, 30 CH); 5,20–5,15 (m, CH); 4,28–4,24 (m, CH); 2,67–2,34 (m, 6 CH₂); 2,60, 2,48 (AB von ABX, J_{AB} = 15,52, J_{AX} = 7,42, J_{BX} = 5,78, 26 CH₂); 1,27 (d, J = 6,31, 29 Me); 1,24 (d, J = 6,35, Me); 1,2 (d, J = 6,31, Me); 1,11 (d, J = 6,12, Me); 1,03 (s, t-Bu). ¹³C-NMR (100 MHz): 170,33; 169,75; 169,66; 169,45; 169,37; 169,35; 169,30; 169,26; 169,17; 135,83; 135,81; 134,28; 133,94; 129,67; 129,60; 127,59; 127,52; 68,34; 68,06; 67,87; 67,72; 67,63; 67,54; 67,19; 66,72; 44,60; 41,40; 40,89; 40,81; 26,91; 23,43; 20,04; 19,84; 19,78; 19,70; 19,57; 19,17. LSI-MS: 3055,6 (10), 3033,6 (100). Anal. ber. für C₁₄₄H₂₁₂O₆₅Si · 1 CF₃CH₂OH: C 56,36, H 6,97; gef.: C 56,44, H 6,97.

α-Benzyl-ω-hydroxydotriaconta[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (23). Nach AAV4, mit 2,78 g (896 μmol) 39, 25 ml CH₂Cl₂ und 3 ml HF · Pyridin (Aufarbeiten mit CH₂Cl₂ statt Et₂O): 2,74 g (1:1)-Gemisch von (*t*-Bu)Ph₂SiF/23 (98%) als weisser Feststoff. Zur Bestimmung der anal. Daten wurden 100 mg 3mal in Pentan digeriert. Schmp. 158,5–159,0°. [α]₁₀²⁰ = -1,8, [α]₃₆₅²⁰ = +7,1 (*c* = 0,58, CH₂Cl₂). IR: 3010w, 2986m, 2936w, 2879w, 1733vs, 1458m, 1383s, 1305vs, 1266s, 1179vs, 1136s, 1101s, 1059vs, 978m, 928w. ¹H-NMR (500 MHz): 7,38–7,31 (*m*, 5 arom. H); 5,33–5,21 (*m*, 31 CH); 5,12 (*s*, PhCH₂O); 4,21–4,16 (*m*, CH); 3,09 (*d*, *J* = 3,87, OH); 2,71–2,37 (*m*, 10 CH₂); 2,60, 2,47 (*AB* von *ABX*, J_{AB} = 15,51, J_{AX} = 7,44, J_{BX} = 5,83, 22 CH₂); 1,31 (*d*, *J* = 6,35, Me); 1,28 (*d*, *J* = 6,34, 2 Me); 1,27 (*d*, *J* = 6,32, 26 Me); 1,27 (*d*, *J* = 7,12, Me); 1,24 (*d*, *J* = 6,32, Me); 1,22 (*d*, *J* = 6,26, Me). ¹³C-NMR (125 MHz): 172,01; 169,91; 169,42; 169,20; 169,15; 13572; 128,61; 128,35; 67,76; 67,70; 67,62; 67,55; 67,46; 66,49; 64,39; 43,26; 40,81; 40,68; 22,54; 19,90; 19,82; 19,78; 19,74; 19,61. LSI-MS: 2885,2 (15), 2863,7 (100). Anal. ber. für C₁₃₅H₂₀₀O₆₅Si: C 56,64, H 7,04; gef.: C 56,65, H 6,84.

α-Hydro-ω-hydroxydotriaconta[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (43). Nach AAV3 wurden 3,84 g 23/(t-Bu)Ph₂SiF 1:1 (je 1,23 mmol) in 150 ml CF₃CH₂OH hydriert: 3,72 g Rohprodukt. Die Reinigung erfolgte durch 2faches Digerieren in je 140 ml Pentan: 3,01 g (90%) 43. Weisser Feststoff. Schmp. 178,0–179,0°. [α]₂₀^D = -2,9, [α]₂₆₅²⁰ = +3,9 (c = 1,00, CH₂Cl₂). IR: 2987w, 2936w, 1736vs, 1459w, 1383m, 1306m, 1267m, 1179m, 1059m, 980w. ¹H-NMR (400 MHz): 5,33–5,22 (m, 31 CH); 4,22–4,15 (m, CH); 3,11–3,00 (br., OH, COOH); 2,63–2,47 (m, 32 CH₂); 1,31–1,11 (m, 32 Me). ¹³C-NMR (100 MHz): 172,01; 169,71; 169,41; 169,34; 169,26; 169,16; 68,05; 67,84; 67,76; 67,70; 67,63; 67,54; 64,39; 43,26; 40,90; 40,81; 22,54; 20,01; 19,89; 19,77; 19,69. LSI-MS: 2817,3 (13,7, [M + 2 Na – H]⁺), 2795,4 (100, [M + Na]⁺), 2773,3 (<1,0, [M – H]⁺), 2709 (3,8, [M + Na – 86]⁺). Anal. ber. für C₁₂₈H₁₉₄O₆₅: C 55,44, H 7,05; gef.: C 55,01, H 7,09.

3.11. Tetrahexacosamere. α -Benzyl- ω -[(tert-butyl)diphenylsilyloxy]tetrahexaconta[(R)-oxy(3-methyl-1oxopropan-1,3-diyl)] (24). Säurechlorid-Herstellung nach AAV1, mit 2,34 g (775 µmol) 22 in 30 ml CH₂Cl₂. Das Säurechlorid wurde 13 h bei 10⁻⁶ mbar getrocknet. Kupplung nach AAV2, bei -78° mit 2,42 g 23/(t-Bu)Ph₂SiF 1:1 (je 775 µmol) in 30 ml CH₂Cl₂ (Aufarbeitung ohne Et₂O): 4,36 g weisser Feststoff. ¹H-NMR: Umsatz ca. 80%. Mittels DC (Kieselgel, CH₂Cl₂/Et₂O 3:1 bis 1:1 oder CH₂Cl₂/Et₂O/MeOH 2:2:1) liessen sich die Produkte trennen, auf der Säule blieben die Produkte sitzen, oder es kam zu Zersetzungen. Mit neutralem Alox gelang die Trennung ebenfalls nur mittels DC (CH₂Cl₂/Et₂O/MeOH 20:10:1), auf der Säule erfolgte keine Trennung. Schliesslich erfolgte die Reinigung durch Lösen in heissem THF und langsamem Abkühlen auf RT. Die Reinheits-kontrolle erfolgte mittels GPC. Mehrfaches Wiederholen dieser Prozedur ergab 1,40 g (31 %) **24**. Weisser Feststoff. Schmp. 149,5–151,0°. [α]_D²⁰ = ±0,0, [α]₃₆₅²⁰ = +12,3 (c = 0,725, CH₂Cl₂). IR: 3032w, 298w, 2936w, 1737vs, 1458w, 1383s, 1306s, 1265s, 1178vs, 1135m, 1101m, 1059s. ¹H-NMR (500 MHz): 7,68–7,66 (m, 4 arom. H); 7,44–7,31 (m, 11 arom. H); 5,32–5,16 (m, 63 CH); 5,12 (s, CH₂); 4,28–4,24 (m, CH); 2,60, 2,47 (AB von ABX, J_{AB} = 15,51, J_{AX} = 7,39, J_{BX} = 5,84, CH₂); 1,27 (d, J = 6,32, 63 Me); 1,11 (d, J = 6,10, Me); 1,03 (s, t-Bu). ¹³C-NMR (125 MHz): 170,32; 169,91; 169,15; 135,83; 135,81; 135,72; 134,78; 133,94. 129,67; 129,59; 128,61; 128,55; 127,59; 127,51; 67,77; 67,63; 67,54; 67,46; 67,19; 66,72; 66,49; 44,60; 41,03; 40,88; 40,81; 40,68; 40,57; 26,91; 23,43; 19,78; 19,74; 19,17. MALDI-MS: 58773, (M + Na – H]⁺). LSI-MS: 5878,7 (100, [M + Na]⁺), 5857,6 (23, [M + H]⁺). Anal. ber. für C₂₇₉H₄₁₀O₁₂₉Si: C 57,22, H 7,06; gef.: C 57,30, H 6,91.

α-Hydro-ω-[(tert-butyl) diphenylsilyloxy] tetrahexaconta[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (25). Nach AAV3 wurden 380 mg (64,9 µmol) 24 in 40 ml CF₃CH₂OH hydriert: 356 mg (95%) 25. Weisser Feststoff. Schmp. 151,0–152,5°. [α]₂₀²⁰ = ±0,0, [α]₃₆₅²⁶ = +10,6 (c = 0,21, CH₂Cl₂). IR: 3011w, 2987w, 2933w, 1738vs, 1458w, 1383m, 1306m, 1178vs, 1134m, 1101m, 1059s, 980w. ¹H-NMR (500 MHz): 7,68–7,66 (m, 4 arom. H); 7,43–7,34 (m, 6 arom. H); 5,29–5,17 (m, 63 CH); 4,28–4,24 (m, CH); 2,60, 2,47 (AB von ABX, J_{AB} = 15,51, J_{AX} = 7,38, J_{BX} = 5,85, CH₂); 1,27 (d, J = 6,32, 63 Me); 1,11 (d, J = 6,11, Me); 1,03 (s, t-Bu). ¹³C-NMR (125 MHz): 170,31; 169,77; 169,45; 169,37; 169,29; 169,25; 169,20; 169,15; 146,50; 145,95; 135,84; 135,82; 134,29; 129,67; 129,60; 127,59; 127,52; 68,07; 67,90; 67,72; 67,63; 67,54; 67,19; 66,73; 44,61; 40,90; 40,82; 26,92; 23,43; 20,11; 19,88; 19,78; 19,71; 19,61; 19,17. MALD1-MS: 5789,2 ([M + Na]⁺). Anal. ber. für C₂₇₂H₄₀₄O₁₂₉Si: C 56,66, H 7,06; gef.: C 56,48, H 7,08.

α-Benzyl-ω-hydroxytetrahexaconta[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (**26**). Nach AAV4, mit 430 mg (73 μmol) **24**, 2 ml CH₂Cl₂ und 2,3 ml HF · Pyridin (Aufarbeiten mit CH₂Cl₂ statt Et₂O). Nach 2mal Umfällen aus CH₂Cl₂/Pentan (5 ml/20 ml) wurden 401 mg (98%) **26** erhalten. Weisser Feststoff. Schmp. 164,5–166,0°. [α]₂₀²⁰ = -0,9, [α]₃₆₅²⁰ = +9,6 (c = 0,785, CH₂Cl₂). IR: 3032w, 2987w, 2937w, 2879w, 1742vs, 1458w, 1383s, 1306vs, 1178vs, 1135m, 1101m, 1060vs, 979w. ¹H-NMR (500 MHz): 7,37–7,34 (m, 5 arom. H); 5,29–5,22 (m, 63 CH); 5,12 (s, CH₂); 4,20–4,16 (m, CH); 3,10 (d, J = 3,76, OH); 2,60, 2,47 (*AB* von *ABX*, J_{AB} = 15,51, J_{AX} = 7,42, J_{BX} = 5,83, CH₂); 1,28 (d, J = 6,32, 64 Me). ¹³C-NMR (125 MHz): 172,02; 169,91; 169,42; 169,15; 168,92; 135,71; 134,42; 130,26; 128,56; 128,35; 127,90; 67,75; 67,69; 67,62; 67,54; 67,45; 66,48; 64,38; 43,26; 41,02; 40,95; 40,80; 40,67; 40,63; H v,063; H v,07; 19,61. MALDI-MS: 5640,6 ([M + Na]⁺). Anal. ber. für C₂₆₃H₃₉₂O₁₂₉: C 56,23, H 7,03; gef.: C 56,21, H 6,89.

3.12. Octacosahectamere. α -Benzyl- ω -[(tert-butyl)diphenylsilyloxy]octacosahecta[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (27). Säurechlorid-Herstellung nach AAV1, mit 270 mg (46,8 µmol) 25 in 10 ml CH₂Cl₂. Das Säurechlorid wurde 12 h bei 10⁻⁵ mbar getrocknet. Kupplung nach AAV2, bei –78° mit 270 mg (48,1 µmol) 26 in 10 ml CH₂Cl₂. Nach 20 h waren laut GPC 10% umgesetzt. Aufarbeitung ohne Et₂O-Zugabe ergab 530 mg weissen Feststoff, der nach GPC allerdings kein Produkt mehr enthielt. Dieses Rohprodukt wurde i. HV. 48 h getrocknet, in 10 ml CH₂Cl₂ gelöst, bei 0° mit 9,4 µl (70 µmol) 2,6-Dichlorobenzoyl-chlorid und dann 10 µl Pyridin versetzt und 12 h bei RT. gerührt. Nach Zugabe von 4,7 µl (35 µmol) 2,6-Dichlorobenzoyl-chlorid wurde weitere 36 h gerührt. Es wurde nach AAV2 aufgearbeitet (ohne Et₂O-Zugabe). Das Rohprodukt wurde 2mal in heissem THF suspendiert, auf 40° abgekühlt und das THF abdekantiert: 30 mg leicht gelbliches Rohprodukt. Davon wurden 25 mg in 0,5 ml CHCl₃ gelöst und in Portionen à 25 µl mittels anal. GPC (nur eine Säule: Shodex K-803) gereinigt: 12 mg (2%; 10% 64mere 25 und 26 enthaltend) 27. Weisser Feststoff. ¹H-NMR (500 MHz): 7,68–7,66 (*m*, 4 arom. H); 7,43–7,32 (*m*, 11 arom. H); 5,32–5,20 (*m*, 127 CH); 5,12 (*s*, CH₂); 4,28–4.24 (*m*, CH); 2,60, 2,47 (*AB* von *ABX*, $J_{AB} = 15,51, J_{AX} = 7,39, J_{BX} = 5,83, CH₂); 1,28 ($ *d*, J = 6,32, 127 Me); 1,11 (*d*, J = 6,14, Me); 1,03 (*s*,*t*-Bu).¹³C-NMR (125 MHz): 169,14; 135,83; 129,66; 129,59; 128,60; 128,35; 127,59; 127,51; 69,43; 67,63; 67,46; 67,19;66,72; 66,49; 44,60; 40,81; 40,68; 36,45; 26,91; 23,43; 19,78; 19,27. LSI-MS: 11404,0 ([<math>M + K]⁺).

α-Hydro-ω-hydroxyoctacosahecta[(R)-oxy(3-methyl-1-oxopropan-1,3-diyl)] (36). Nach AAV4, mit 11 mg (871 nmol) 27, 10 ml CH₂Cl₂ und 2 ml HF Pyridin. Nach Aufarbeiten (ohne Et₂O-Zugabe) wurde der weisse Feststoff direkt nach AAV3 in 30 ml CF₃CH₂OH hydriert. Nach 2mal Umfällen aus CH₂Cl₂/Pentan und Trocknen bei 10⁻⁵ mbar wurden 10 mg (92%) 36 erhalten. Weisser Feststoff. ¹H-NMR (500 MHz): 5,30–5,22 (*m*, 127 CH); 4,28–4,24 (*m*, CH); 2,60, 2,47 (AB von ABX, J_{AB} = 15,51, J_{AX} = 7,40, J_{BY} = 5,84, CH₂); 1,28 (*d*, J = 6,32, Me). ¹³C-NMR (125 MHz): 169,15; 67,63; 40,82; 19,78. MALDI-MS: 11075,4 (100, [M + K]⁺), 11057,3 (35, [M + Na]⁺).

4. Oligolide. (4 R,8 R,12 R,16 R,20 R,24 R,28 R,32 R)-4,8,12,16,20,24,28,32-Octamethyl-1,5,9,13,17,21,25,29octaoxacyclodotriacontan-2,6,10,14,18,22,26-octon (44). Gemäss AAV5, mit 100,0 mg (145,3 μmol) 39, 33,6 mg (152,6 µmol) Di-2-pyridyl-disulfid, 400 ml CH₂Cl₂, 40 mg (152,6 µmol) PPh₃ in 10 ml CH₂Cl₂ und 34,1 mg (152,6 µmol) CuBr₂ (18 h). Die Suspension wurde nach Eindampfen mittels FC gereinigt (Et₂O/Pentan 2:1): 50 mg (50%) **44**. Weisser Feststoff. DC (Et₂O/Pentan 2:1): R_f 0,2. ¹H-NMR (300 MHz): 5,30–5,20 (*m*, 8 CH); 2,65–2,4 (*m*, 8 CH₂); 1,28 (*d*, 8 Me). LSI-MS: 689,2 (34,9, $[M + H]^+$), 155,0 (50,3), 137,0 (12,3), 86,9 (11,3), 68,9 (100); entspricht [23].

(4 R,8 R,12 R,16 R,20 R,24 R,28 R,32 R,36 R,40 R,44 R,48 R)-4,8,12,16,20,24,28,32,36,40,44,48-Dodecamethyl-1,5,9,13,17,21,25,29,33,37,41,45-dodecaoxacyclooctatetracontan-2,6,10,14,18,22,26,30,34,38,42,46-dodecon (45). Gemäss AAV5, mit 200,0 mg (190,3 µmol) 40, 43,9 mg (199,8 µmol) Di-2-pyridyl-disulfid, 60 ml CH₂Cl₂, 52,3 mg (199,8 µmol) PPh₃ in 5 ml CH₂Cl₂ und 44,6 mg (199,8 µmol) CuBr₂ (2 d). Die Suspension wurde nach Eindampfen mittels FC gereinigt (Et₂O/CH₂Cl₂ 4:1). Das Rohprodukt (107,8 mg) wurde durch präp. DC (0,25 × 200 × 200 mm, Et₂O/CH₂Cl₂ 4:1) weiter gereinigt. Digerieren in 30 ml Hexan ergab 42,6 mg (23%) 45. Weisser Feststoff. DC (Et₂O/CH₂Cl₂ 1:4): R_f 0,3. Schmp. 98,0–99,0°. $[\alpha]_D^{20} = +6,5, [\alpha]_{365}^{20} = +19,6$ (c = 0,43, CH₂Cl₂). IR: 2986w, 2936w, 1740vs, 1459w, 1383m, 1305m, 1263m, 1179s, 1138w, 1102m, 1058m, 980w. ¹H-NMR (400 MHz): 5,30–5,22 (m, 12 CH); 2,60, 2,48 (AB von ABX, $J_{AB} = 15,58, J_{AX} = 7,61, J_{BX} = 5,63, CH_2$); 1,28 (d, J = 6,33, 12 Me). ¹³C-NMR (100 MHz): 169,17; 67,62; 40,72; 19,78. LSI-MS: 1055,3 (11,2, [M + Na – H]⁺), 1033,4 (19,0, M^+), 345,1 (10,6), 259,1 (11,5), 173,1 (19,2), 87,0 (30,6), 68,9 (100). Anal. ber. für C₄₈H₇₂O₂₄: C 55,81, H 7,02; gef.: C 55,55, H 6,83.

 $(4 \text{ R},8 \text{ R},12 \text{ R},16 \text{ R},20 \text{ R},24 \text{ R},28 \text{ R},32 \text{ R},36 \text{ R},40 \text{ R},44 \text{ R},48 \text{ R},52 \text{ R},56 \text{ R},60 \text{ R},64 \text{ R})-4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64-Hexadecamethyl-1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61-hexadecaoxacyclotetrahexacontan-2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62-hexadecon (46). Gemäss AAV5, mit 100,0 mg (71,6 µmol) 41, 16,6 mg (75,2 µmol) Di-2-pyridyl-disulfid, 30 ml CH₂Cl₂, 19,7 mg (75,2 µmol) PPh₃ in 3 ml und 16,8 mg (75,2 µmol) CuBr₂ (2 d). Die Suspension wurde nach Eindampfen mittels FC (Et₂O/CH₂Cl₂ 3:1) gereinigt: 38,8 mg Rohprodukt. Digerieren in 10 ml Hexan ergab 18,0 mg (18%) 46. Weisser Feststoff. DC (Et₂O/CH₂Cl₂ 1:3):<math>R_f$ 0,2. Schmp. 122,0–123,0°. [α]₂₀²⁰ = +1,3, [α]₂₀²⁶ = +14,0 (c = 0,43, CH₂Cl₂). IR: 2986w, 1739vs, 1459w, 1382w, 1306m, 1262w, 1179m, 1133w, 1100w, 1059m, 980w. ¹H-NMR (400 MHz): 5,30–5,22 (m, 16 CH); 2,60, 2,48 (AB von ABX, J_{AB} = 15,54, J_{AX} = 7,50, J_{BX} = 5,72, CH₂); 1,28 (d, J = 6,32, 16 Me). ¹³C-NMR (100 MHz): 169,16; 67,62; 40,79; 19,77. LSI-MS: 1509,5 (< 1,0, [M + Cs]⁺), 1399,3 (2,3, [M + Na]⁺), 1377,5 (6,1, [M + H]⁺), 90,9 (14,0), 86,9 (12,1), 68,9 (100). Anal. ber. für C₆₄H₉₆O₃₂: C 55,81, H 7,02; gef.: C 55,43, H 6,95.

(4 R, 8 R, 12 R, 16 R, 20 R, 24 R, 32 R, 32 R, 36 R, 40 R, 44 R, 48 R, 52 R, 56 R, 60 R, 64 R, 68 R, 72 R, 76 R, 80 R, 84 R, 88 R, 92 R, 96 R, 100 R, 104 R, 108 R, 112 R, 116 R, 120 R, 124 R, 128 R) -4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128 - Dotriacontamethyl-1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125-dotriacontaoxacyclooctacosahectan-2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126-dotriaconton (47). Gemäss AAV5, mit 500, 0 mg (180, 3 µmol) 43, 41, 7 mg (189, 3 µmol) Di-2-pyridyl-disulfid, 60 ml CH₂Cl₂, 49, 6 mg (189, 3 µmol) PPh₃ in 5 ml CH₂Cl₂ und 42, 3 mg (189, 3 µmol) CuBr₂(4 d). Nach Eindampfen wurde der Rückstand in reinem CH₂Cl₂ aufgeschlämmt. Filtration und Eindampfen ergaben 237 mg Rohprodukt. Mehrfache präp. DC (2 Platten à 0, 25 × 200 × 200 mm, 1 Platte à 0, 25 × 20 × 200 mm, Et₂O/CH₂Cl₂ 4:1; Desorption mit CF₃CH₂OH) ergab 21 mg verunreinigte Substanz, die in 12 ml Hexan digeriert wurde: 17, 1 mg (3%) 47. Weisser Feststoff. DC (Et₂O/CH₂Cl₂ 1:2): R₁0, 2. ¹H-NMR (500 MHz, CDCl₃/(D₆)Accton 2,5:1): 5, 30-5,22 (m, 32 CH); 2, 53, 2, 42 (AB von ABX, J_{AB} = 15,57, J_{AX} = 7,52, J_{BX} = 5,71); 1, 28 (d, J = 6, 32, 32 Me). ¹³C-NMR (125 MHz): 169, 16; 67, 62; 40, 79; 19, 77. LSI-MS: 2886, 8 (< 1,0, [M + Cs]⁺), 2793, 1 (6,7, [M + K]⁺), 2777, 3 (100, [M + Na]⁺), 1755, 3 (15,4, M⁺), 2691, 2 (4,8, [M - 86 + Na]⁺).

5. Gemischte Cyclen. (R)-3-[(tert-Butyl)dimethylsilyloxy]pentansäure (48). Wie für Säure 7 beschrieben, aus (R)-3-Hydroxypentansäure.

(R)-3-Hydroxypentansäure-benzylester (49). Zu 7,0 g (30,1 mmol) 48 und 8,1 g (75 mmol) Benzyl-alkohol in 120 ml CH₂Cl₂ bei 0° wurde eine auf 0° gekühlte Lsg. von 7,42 g (36 mmol) DCC und 440 mg (3,6 mmol) DMAP in 30 ml CH₂Cl₂ gegeben. Nach 5 h Rühren bei 0° wurde Pentan (100 ml) zugegeben, das Gemisch über *Celite* filtriert und das Filtrat eingeengt, mit 150 ml Et₂O versetzt, 2mal mit 1N HCl, 2mal mit ges. NaHCO₃-Lsg. und 1mal mit NaCl-Lsg. gewaschen, getrocknet (MgSO₄) und eingedampft. Nach FC wurde das erhaltene Öl in 90 ml CH₂Cl₂ gelöst und nach *AAV4* mit 9 ml HF · Pyridin behandelt: 5,83 g (93%) 49. Farbloses Öl. Spektroskopische Daten: übereinstimmend mit denen in [84].

(3 R)-3-{{ (3° R) -3'-[(tert-Butyl)dimethylsilyloxy]pentanoyl}oxy}butansäure-benzylester (50). Zu 6,75 g (29,1 mmol) 48 und 6,01 g (31,0 mmol) 2 unter Ar in 150 ml CH₂Cl₂ bei 0° wurde eine auf 0° abgekühlte Lsg. von 6,60 g (32 mmol) DCC und 400 mg (3,3 mmol) DMAP in 20 ml CH₂Cl₂ gegeben. Nach kurzer Zeit fiel ein weisser Feststoff aus. Nach 3 d Rühren bei 0° wurde Pentan (50 ml) zugegeben und das Gemisch über *Celite* filtriert. Die flüchtigen Bestandteile wurden abgedampft und 200 ml Et₂O zugegeben. Die Lsg wurde 2mal mit 1N HCl, mit ges.

NaHCO₃-Lsg. und mit NaCl-Lsg. gewaschen, getrocknet (MgSO₄) und eingedampft. Nach 2mal FC (Et₂O/Pentan 1:2): E_1 O/CH₂Cl₂ 1:5) wurden 9,16 g (77%) **50** erhalten. Farbloses Öl. DC (Et₂O/Pentan 1:2): R_1 0,7. [z]_D²⁰ = -5,8, [z]₃₆₅²⁰ = -15,2 (c = 0,87, CH₂Cl₂). IR: 3010w, 2959m, 2930s, 2885w, 2857m, 2116w, 1733vs, 1472w, 1463m, 1383m, 1300m, 1177vs, 1103s, 1081m, 1060m, 1039m, 838s. ¹H-NMR (400 MHz): 7,38-7,30 (m, 5 arom. H); 5,31-5,23 (m, CH); 5,12 (s, PhCH₂O); 4,06-4,00 (m, CH); 2,70, 2,54 (AB von ABX, J_{AE} = 15,48, J_{AX} = 7,05, J_{BX} = 6,12); 2,39, 2,35 (AB von ABX, J_{AB} = 14,76, J_{AX} = 6,36, J_{BX} = 6,16, CH₂); 1,56-1,42 (m, CH₂); 1,29 (d, J = 6,33, Me); 0,87 (t, J = 7,43, Me); 0,87 (s, t-Bu); 0,06 (s, MeSi); 0,04 (s, MeSi). ¹³C-NMR (100 MHz): 77,87; 170,01; 135,74; 128,58; 128,31; 128,26; 70,25; 67,31; 66,43; 42,31; 40,81; 30,01; 25,81; 19,85; 18,02; 9,25; -4,60; -4,70. EI-MS: 409,11 (0,1, M^+), 351,1 (11), 265,0 (10), 175,0 (46), 133,0 (10), 91,0 (100). Anal. bet. für C₂₂H₃₆O₅Si: C 64,67, H 8,88; gef.: C 64,61, H 9,07.

(3 R)-3-{{(3' R)-3'-[(tert-Butyl)dimethylsilyloxy]pentanoyl}oxy}pentansäure-benzylester (51). Wie für 50 beschrieben, mit 6,26 g (27 mmol) 48, 5,6 g (27 mmol) 49, 180 ml CH₂Cl₂, 6,10 g (29 mmol) DCC, 400 mg (3,3 mmol) DMAP und 30 ml CH₂Cl₂ (4 d). Aufarbeiten mit 150 ml Et₂O. NC (Et₂O/Pentan 1:5) ergab 8,08 g (71%) 51. Farbloses Öl. DC (Et₂O/Pentan 1:5): $R_f 0,7. [\alpha]_{10}^{20} = -1,7, [\alpha]_{365}^{20} = -4,3 (c = 0,79, CH₂Cl₂). IR: 3010w, 2960m, 2931m, 2883w, 2857w, 1734vs, 1463w, 1385w, 1175s, 1110m, 1082m, 1033w, 1005w, 837s. ¹H-NMR (400 MHz): 7,38-7,30 (m, 5 arom. H); 5,21-5,15 (m, CH); 5,11 (s, PhCH₂); 4,06-4,00 (m, CH); 2,65, 2,59 ($ *AB*von*ABX* $, <math>J_{AB} = 15,44, J_{AX} = 7,18, J_{BX} = 5,73, CH₂); 2,41, 2,37 ($ *AB*von*ABX* $, <math>J_{AB} = 14,76, J_{AX} = 5,85, J_{BX} = 6,60, CH₂); 1,68-1,61 (m, CH₂); 1,56-1,41 (m, CH₂); 0,90 (t, <math>J = 7,41, Me$); 0,88 (t, J = 6,45, Me); 0,87 (s, t-Bu); 0,06 (s, MeSi). ¹³C-NMR (100 MHz): 171,00; 170,23; 135,78; 128,58; 123,28; 71,60; 70,20; 66,45; 42,25; 38,69; 29,95; 26,85; 25,83; 18,04; 9,38; 9,27; -4,62; -4,67. EI-MS: 423,3 (17, [M - H]⁺), 365,2 (33), 175,1 (48), 91,0 (100). Anal. ber. für C₂₃H₃₈O₅Si: C 65,36, H 9,06; gef.: C 65,62, H 8,80.

(3 R)-3- {[(3' R)-3'-Hydroxypentanoyl]oxy}butansäure-benzylester (52). Nach AAV4, mit 8,75 g (21,4 mmol) 50, 60 ml CH₂Cl₂ und 5 ml HF · Pyridin (14 min): 6,02 g (96%) praktisch reines (¹H-NMR) 52. Gelbliches Öl. Zur Bestimmung der anal. Daten wurden 500 mg mittels FC (Et₂O/Pentan 1:1,5) gereinigt. DC (Et₂O/Pentan 1:1,5): R_{f} (0,2. [α]₂₀² = -17,5, [α]₃₀₅² = -49,6 (c = 1,165, CH₂Cl₂). IR: 3531w, 3009m, 2968m, 2936m, 2880w, 1732vs, 1498w, 1456m, 1383s, 1302s, 1179vs, 1140s, 1103s, 1060s, 983m. ¹H-NMR (400 MHz): 7,39-7,30 (m, 5 arom. H); 5,38-5,30 (m, CH); 5,13, 5,12 (AB, J_{AB} = 12,31, PhCH₂); 3,93-3,85 (m, CH); 2,68, 2,58 (AB von ABX, J_{AB} = 15,56, J_{AX} = 7,91, J_{BX} = 5,10, CH₂); 2,42, 2,31 (AB von ABX, J_{AB} = 15,91, J_{AX} = 3,04, J_{BX} = 9,10, CH₂); 1,58-1,41 (m, CH₂); 1,31 (d, J = 6,33, Me); 0,95 (t, J = 7,45, Me). ¹³C-NMR (100 MHz): 172,29; 170,16; 135,62; 128,61; 128,40; 69,48; 67,61; 66,63; 41,26; 40,73; 29,44; 19,93; 9,81. EI-MS: 294,2 (1,3, M^+), 265,1 (2,4), 194,1 (12), 91,0 (100). Anal. ber. für C₁₆H₂₂O₅: C 65,29, H 7,53; gef.: C 65,02, H 7,75.

(3R)-3- {[(3'R)-3'-Hydroxypentanoyl]oxy}pentansäure-benzylester (53). Nach AAV4 mit 7,14 g (16,9 mmol) 51, 50 ml CH₂Cl₂ und 5 ml HF · Pyridin (15 min): 4,88 g (93%) praktisch reines (¹H-NMR) 53. Gelbliches Öl. Zur Bestimmung der anal. Daten wurden 300 mg mittels FC (Et₂O/Pentan 1:3) gereinigt. DC (Et₂O/Pentan 1:3): $R_1 0,7. [\alpha]_{20}^{20} = -13,5, [\alpha]_{20}^{20} = -40,3 (c = 0,91, CH₂Cl₂). IR: 3526(br.), 3008w, 2971m, 2938w, 2881w, 1732vs, 1600w, 1462w, 1383w, 1323m, 1174vs, 1121m, 982m. ¹H-NMR (400 MHz): 7,39–7,30 (m, 5 arom. H); 5,28–5,21 (m, CH); 5,12, 5,11 (AB, J_{AB} = 12,32, PhCH₂); 3,90–3,67 (m, CH); 2,94 (s, OH); 2,64, 2,61 (AB von ABX, J_{AB} = 15,44, J_{AX} = 8,30, J_{BX} = 5,34, CH₂); 2,44, 2,32 (AB von ABX, J_{AB} = 15,80, J_{AX} = 2,99, J_{BX} = 9,13, CH₂); 1,69–1,62 (m, CH₂); 1,59–1,41 (m, CH₂); 0,95 (t, J = 7,45, Me); 0,92 (t, J = 7,44, Me). ¹³C-NMR (100 MHz): 172,47; 170,44; 135,63; 128,60; 128,43; 128,38; 71,92; 69,57; 66,68; 41,28; 38,74; 29,47; 27,03; 9,81; 9,42. EI-MS: 308,1 (0,5, M⁺), 279,0 (1,1), 201,0 (6,7), 119,0 (7,6), 91,0 (100). Anal. ber. für C₁₇H₂₄O₅: C 66,21, H 7,84; gef.: C 66,56, H 7,87.$

 $(3 \text{ R})-3-\{\{(3' \text{ R})-3'-\{[(3'' \text{ R})-3''-(Benzyloxy)butanoyl]oxy\}pentanoyl]oxy\}butansäure-benzylester (54).$ Säurechlorid-Herstellung nach AAVI, mit 3,90 g (20,1 mmol) (R)-3-(Benzyloxy)butansäure-benzylester (54). Säurechlorid-Herstellung nach AAVI, mit 3,90 g (20,1 mmol) (R)-3-(Benzyloxy)butansäure in 100 ml CH₂Cl₂. Kupplung nach AAVI, bei -10° mit 5,49 g (18,7 mmol) 52 in 100 ml CH₂Cl₂. NC (Et₂O/Pentan 1:2,5) ergab 7,78 g (88%) 54. Farbloses Öl. DC (Et₂O/Pentan 1:2,5): R_f 0,7. $[\alpha]_{D}^{20} = -5,6, [\alpha]_{365}^{20} = -13,7 (c = 1,305, CH₂Cl₂). IR: 3067w, 3009w, 3975m, 2938w, 2881w, 1732vs, 1497w, 1455m, 1381s, 1300vs, 1179vs, 1132s, 1084vs, 1057s, 976m. ¹H-NMR (400 MHz): 7,38-7,22 (m, 10 arom. H); 5,32-5,24 (m, CH); 5,19-5,12 (m, CH); 5,111 (s, PhCH₂); 4,55, 4,50 (AB, <math>J_{AB} = 11,55$, PhCH₂); 4,03-3,95 (m, CH); 2,67, 2,52 (AB von ABX, $J_{AB} = 15,60, J_{AX} = 7,80, J_{BX} = 5,58$, CH₂); 2,65, 2,41 (AB von ABX, $J_{AB} = 14,97, J_{AX} = 7,04, J_{BX} = 6,22, CH_2$); 2,50, 2,44 (AB von ABX, $J_{AB} = 15,31, J_{AX} = 7,44, J_{BX} = 5,70, CH_2$); 1,63=1,55 (m, CH₂); 1,26 (d, J = 6,32, Me); 1,25 (d, J = 6,15, Me); 0,87 (t, J = 7,45, Me). ¹³C-NMR (100 MHz): 170,69; 169,94; 169,48; 138,55; 135,72; 128,59; 128,32; 127,61; 127,50; 71,96; 71,60; 70,77; 67,64; 66,46; 42,03; 40,68; 38,88; 26,86; 19,88; 19,78; 9,38. LSI-MS: 493,1 (1,3, [M + Na]⁺), 471,1 (9,3, [M + H]⁺), 277,1 (8,4), 181,1 (27), 90,9 (100). Anal. ber. für C₂₇H₃₄O₇: C 68,92, H 7,28; gef.: C 68,77, H 7,32.

(3 R)-3-{{(3' R)-3'-{(13'' R)-3''-(Benzyloxy)butanoyl]oxy}pentanoyl}oxy}pentanoyl}oxy}pentansäure-benzylester (55). Säurechlorid-Herstellung nach AAV1, mit 3,20 g (16,5 mmol) (R)-3-(Benzyloxy)butansäure in 60 ml CH₂Cl₂. Kupplung nach AAV2, bei -10° mit 4,48 g (14,5 mmol) 53 in 100 ml CH₂Cl₂. FC (Et₂O/Pentan 1:3) ergab 5,48 g (78 %) **55**. Farbloses Öl. DC (Et₂O/Pentan 1:3): $R_{f}0,7. [\alpha]_{D}^{20} = -5,9, [\alpha]_{365}^{20} = -14,8 (c = 1,27, CH₂Cl₂). IR: 3011w, 2975m, 2882w, 1735vs, 1600w, 1456w, 1380m, 1297m, 1177vs, 1084s, 975m. ¹H-NMR (400 MHz): 7,38–7,22 (m, 10 arom. H); 5,22–5,13 (m, 2 CH); 5,10 (s, PhCH₂); 4,54, 4,49 ($ *AB* $, <math>J_{AB} = 11,48$, PhCH₂); 4,03–3,95 (m, CH); 2,65, 2,41 (*AB* von *ABX*, $J_{AB} = 15,06$, $J_{AX} = 6,72$, $J_{BX} = 6,27$, CH₂); 2,62, 2,56 (*AB* von *ABX*, $J_{AB} = 15,51$, $J_{AX} = 7,57$, $J_{BX} = 5,34$, CH₂); 2,52, 2,45 (*AB* von *ABX*, $J_{AB} = 15,41$, $J_{AX} = 7,30$, $J_{BX} = 5,68$, CH₂); 1,66–1,55 (m, CH₂); 1,25 (d, J = 6,15, Me); 0,88 (t, J = 7,47, Me); 0,87 (t, J = 7,45, Me). ¹³C-NMR (100 MHz): 170,69; 170,16; 169,66; 138,55; 135,74; 128,57; 128,35; 128,31; 127,60; 127,49; 71,96; 71,63; 70,76; 66,48; 42,03; 38,73; 38,62; 26,87; 26,79; 19,88; 9,35. LSI-MS: 507,2 (0,8, [M + Na]⁺), 485,2 (7,2, [M + H]⁺), 191,1 (16), 181,1 (34), 90,9 (100). Anal. ber. für C₂₈H₃₆O₇: C 69,40, H 7,49; gef.: C 69,36, H 7,54.

(3 R)-3- {{(3' R)-3'- {(13' R)-3"-Hydroxybutanoyl]oxy}pentanoyl}oxy}butansäure (**56**). Gemäss AAV3 wurden 7,40 g (15,7 mmol) **54** in 50 ml MeOH hydriert: 4,50 g (98 %) reines (¹H-NMR) **56**. Farbloses Öl. [α]_D²⁰ = -18,5, [α]₃₆₅²⁵ = -47,9 (c = 0,91, CH₂Cl₂). IR: 3500-2400(br.), 3010w, 2977m, 2937w, 1734vs, 1460w, 1383m, 1298m, 1179vs, 1055m. ¹H-NMR (400 MHz): 5,38–5,30 (m, CH); 5,28–5,22 (m, CH); 4,30–4,22 (m, CH); 2,62, 2,53 (AB von ABX, J_{AB} = 15,74, J_{AX} = 8,48, J_{BX} = 6,81, CH₂); 2,57, 2,53 (AB von ABX, J_{AB} = 15,75, CH₂); 2,50, 2,45 (AB von ABX, J_{AB} = 16,22, J_{AX} = 8,82, J_{BX} = 3,67, CH₂); 1,69–1,60 (m, CH₂); 1,30 (d, J = 6,35, Me); 1,25 (d, J = 6,33, Me); 0,91 (t, J = 7,46, Me). ¹³C-NMR (100 MHz): 173,92; 172,00; 170,10; 72,13; 67,80; 64,75; 42,98; 40,70; 39,01; 27,20; 22,40; 19,92; 9,37. LSI-MS: 291,2 (0,2, [M + H]⁺), 205,2 (12), 187,2 (37), 101,1 (86), 87,1 (88). Anal. ber. für C₁₃H₂₂O₇: C 53,78, H 7,64; gef.: C 53,51, H 7,55.

(3 R)-3- {{(3' R)-3'- {(13' R)-3"-Hydroxybutanoyl]oxy} pentanoyl}oxy} pentansäure (57). Gemäss AAV3 wurden 5,30 g (10,9 mmol) 55 in 100 ml MeOH hydriert: 3,16 g (95%) reines (¹H-NMR) 57. Farbloses Öl. [α]_D²⁰ = -13,4, [α]₃₆₅ = -32,6 (c = 1,46, CH₂Cl₂). IR: 3500-2400(br.), 3032w, 2976s, 2938m, 2882w, 1736vs, 1462w, 1386m, 1297s, 1177vs, 1125m, 1083m, 973m. ¹H-NMR (400 MHz): 5,32-5,21 (m, 2 CH); 4,33-4,25 (m, CH); 2,62-2,41 (m, 3 CH₂); 1,69-1,61 (m, 2 CH₂); 1,25 (d, J = 6,34, Me); 0,91 (t, J = 7,49, Me); 0,91 (t, J = 7,46, Me). ¹³C-NMR (100 MHz): 173,71; 171,90; 170,33; 72,19; 64,85; 42,92; 38,91; 38,81; 27,24; 27,16; 22,36; 9,45; 9,37. EI-MS: 305,1 (0,1, [M + H]⁺), 289,0 (0,3), 271,0 (0,6), 242,0 (0,8), 187,0 (9,7), 101,0 (79), 87,0 (22). Anal. ber. für C₁₄H₂₄O₇: C 55,25, H 7,95; gef.: C 55,07, H 7,92.

(4 R, 8 R, 12 R, 16 R, 20 R, 24 R)-4,16-Diethyl-8,12,20,24-tetramethyl-1,5,9,13,17,21-hexaoxacyclotetracosan-2,6,10,14,18,22-hexon (**60**). Zu 570 mg (2,00 mmol) **56** unter Ar in 15 ml THF bei 0° wurden unter Rühren 280 µl (409 mg, 1,95 mmol) 2,6-Dichlorobenzoyichlorid und dann 200 µl (2,50 mmol) Pyridin (getrocknet über Molekularsieb 4 Å) gegeben. Nach 15 min bei 0° und 2 h bei RT. wurde die Lsg. mit einer Dosierpumpe innerhalb von 3 h zu einer Lsg. von 250 mg (2,00 mmol) DMAP in 35 ml Toluol (destilliert über Na-Draht) bei 0° getropft. Es wurde 12 h bei RT. weitergerührt, mit Et₂O (100 ml) versetzt, 2mal mit 1N HCl und 1mal mit NaCl-Lsg. gewaschen, getrocknet (MgSO₄) und eingedampft. FC (Et₂O/Pentan 1:1) ergab 140 mg (26 %) **58** und 100 mg (18 %) **60**, beide als Feststoffe. Ein Einkristall von **60** wurde durch Auskristallisieren aus der öligen Substanz erhalten. DC (Et₂O/Pentan 1:1): $R_{\rm f}$ 0,2. Schmp. 101,5–102,5°. $[\pi]_{20}^{20} = +18,0, [\pi]_{365}^{20} = +67,9$ (c = 0,605, CH₂Cl₂). IR: 2977m, 2937w, 2881w, 1741vs, 1459w, 1383m, 1303s, 1179vs, 1136m, 1103m, 1057s, 974w. ¹H-NMR (500 MHz): 5,36–5,28 (m, 2 CH); 5,25–5,20 (m, CH); 2,67–2,45 (m, 3 CH₂); 1,68–1,56 (m, CH₂); 1,28 (d, J = 6,33, Me); 1,27 (d, J = 6,34, Me); 0,90 (t, J = 7,41, Me). ¹³C-NMR (125 MHz): 169,55; 169,49; 169,29; 71,75; 67,53; 67,51; 40,86; 40,65; 38,59; 26,88; 19,75; 19,72; 9,37. LSI-MS: 568,2 (3,0, [M + Na + H]⁺), 545,2 (59, [M + H]⁺), 255,1 (18), 169,1 (67).

(4 R, 8 R, 12 R, 16 R, 20 R, 24 R) - 4, 8, 16, 20- Tetraethyl-12, 24-dimethyl-1, 5, 9, 13, 17, 21-hexaoxacyclotetracosan-2,6, 10, 14, 18, 22-hexon (61). Wie für 60 beschrieben, mit 608 mg (2,00 mmol) 57, 8 ml THF, 300 µl (438 mg, 2,01 mmol) 2,6- Dichlorobenzoylchlorid und 200 µl (2,5 mmol) Pyridin (30 min bei 0° und 2 h bei RT. \rightarrow weisser Niederschlag). Dann Zugabe innerhalb von 1 h zu 360 mg (2,95 mmol) DMAP in 30 ml Toluol. Nach 2 h bei RT., Aufarbeitung mit 70 ml Et₂O: 150 mg (26%) 59 und 120 mg (21%) 61, beide als Feststoffe. Ein Einkristall von 61 wurde aus einer Hexan-Lsg. erhalten. DC (Et₂O/Pentan 1:1): R_f 0,1. Schmp. 78,5-80,0°. [α]₂₀²⁰ = +21,1, [α]₃₆₅³⁶⁵ = +44,8 (c = 0,645, CH₂Cl₂). IR: 3036w, 2974m, 2940w, 2882w, 1742vs, 1462w, 1387m, 1301s, 1179vs, 1124m, 1102m, 1055m, 973m, 909m. ¹H-NMR (400 MHz): 5,36-5,29 (m, CH); 5,29-5,18 (m, 2 CH₂); 2,71-2,46 (m, 3 CH₂); 1,67-1,58 (m, 2 CH₂); 1,27 (d, J = 6,32, Me); 0,90 (t, J = 7,41,2 Me). ¹³C-NMR (100 MHz): 169,73; 169,50; 169,44; 71,73; 71,66; 67,52; 40,72; 38,64; 38,39; 26,89; 26,85; 19,70; 9,34. LSI-MS: 573,3 (26, (M + H]⁺), 287,2 (11), 269,2 (16), 183,1 (31), 169,1 (57). Anal. ber. für C₂₈H₄₄O₁₂: C 58,73, H 7,74; gef.: C 58,76, H 7,64.

6. Kristallstrukturanalysen. Die Bestimmung der Zellparameter und die Messung der Reflexintensitäten der Kristalle der Hexolide 60 und 61 erfolgten auf einem Enraf-Nonius-CAD4-Vierkreisdiffraktometer, jeweils unter Verwendung von Graphit-monochromatisierter MoK_a-Strahlung ($\lambda = 0,7107$ Å). Beide Strukturen wurden mit direkten Methoden gelöst (SHELXS-86). Die C- und O-Atome wurden anisotrop verfeinert (SHELXL-93) und die H-Atome dem so erhaltenen Strukturmodell in idealisierter Geometrie hinzugefügt und mit konstanten isotropen Temperaturfaktoren (U = 0,08) nach dem 'riding'-Modell verfeinert.

60: Farbloses Prisma, $C_{26}H_{40}O_{12}$, $M = 544,58 \text{ gmol}^{-1}$, $0,1 \times 0,3 \times 0,3 \text{ mm}$, monoclin, Raumgruppe P_{21} , a = 10,102(6) Å, b = 15,174(4) Å, c = 10,629(3) Å, $\beta = 113,11(4)^\circ$, V = 1498,4(1) Å³, Z = 2, $d_x = 1,207 \text{ gcm}^{-3}$, $\mu = 0,095 \text{ mm}^{-1}$, F(000) = 584. Von den 2348 gemessenen Reflexen (ω -'scan', $0 < 2\theta < 46^\circ$, $T 20^\circ$) wurden 2183 mit $I > 3\sigma(I)$ für die Strukturlösung und Verfeinerung benutzt. Die Verfeinerung konvergierte bei einem *R*-Wert von 0,036 (Anzahl der Variablen 343). Die Restelektronendichte in der Endverfeinerung betrug zwischen -0,151 und 0,105 eÅ⁻³.

61: Farbloses Plättchen, C₂₈H₄₄O₁₂, $M = 572,63 \text{ gmol}^{-1}$, $0,2 \times 0,6 \times 0,6 \text{ mm}$, monoclin, Raumgruppe P_{2_1} , a = 10,204(4) Å, b = 15,087(4) Å, c = 10,746(3) Å, $\beta = 100,49(3)^\circ$, V = 1626,8(9) Å³, Z = 2, $d_x = 1,169 \text{ gcm}^{-3}$, $\mu = 0,091 \text{ mm}^{-1}$, F(000) = 616. Von den 2077 gemessenen Reflexen (ω -'scan', $0 < 2\theta < 42^\circ$, $T 20^\circ$) wurden 1402 mit $I > 3\sigma(I)$ für die Strukturlösung und Verfeinerung benutzt. Die Verfeinerung konvergierte bei einem *R*-Wert von 0,067 (Anzahl der Variablen 361). Die Restelektronendichte in der Endverfeinerung betrug zwischen -0,274 und 0,333 eÅ⁻³. Die Restelektronendichte war in der Nähe der Me-Gruppen am höchsten, was darauf hindeutet, dass die Moleküle im Kristall teilweise ungeordnet vorliegen.

LITERATURVERZEICHNIS

- [1] H.G. Schlegel, 'Allgemeine Mikrobiologie', 7. Aufl., Georg Thieme Verlag, Stuttgart, New York, 1992.
- [2] J. M. Shively, Ann. Rev. Microbiol. 1974, 28, 167-187.
- [3] H.-M. Müller, D. Seebach, Angew. Chem. 1993, 105, 483.
- [4] FEMS Microbiol. Rev. 1992, 103, 'Proceedings of the International Symposium on Bacterial Polyhydroxyalkanoates', Eds. H. G. Schlegel und A. Steinbüchel, Goltze-Druck, Göttingen, 1993.
- [5] A. Steinbüchel, Nachr. Chem. Tech. Lab. 1991, 39, 1112.
- [6] D. Seebach, A. Brunner, B.M. Bachmann, T. Hoffmann, F.N.M. Kühnle, U.D. Lengweiler, 'Schering Lecture', Vol. 28, 1995.
- [7] Ganzes Heft, Can. J. Microbiol. 1995, 41 (Suppl. 1).
- [8] A. Steinbüchel, Chemie in unserer Zeit 1995, 5, 260.
- [9] M. Lemoigne, Ann. Inst. Pasteur (Paris) 1925, 39, 144.
- [10] M. Lemoigne, Bull. Soc. Chim. Biol. 1926, 8, 770.
- [11] M. Lemoigne, Ann. Inst. Pasteur (Paris) 1927, 41, 148.
- [12] H. Brandl, R.A. Gross, R.W. Lenz, R.C. Fuller, Adv. Biochem. Eng. Biotechnol. 1990, 41, 77.
- [13] R. N. Reusch, H. L. Sadoff, J. Bacteriol. 1983, 156, 778.
- [14] R. N. Reusch, T. W. Hiske, H. L. Sadoff, J. Bacteriol. 1986, 168, 553.
- [15] R. Reusch, T. Hiske, H. Sadoff, R. Harris, T. Beveridge, Can. J. Microbiol. 1987, 33, 435.
- [16] R. N. Reusch, H. L. Sadoff, Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 4176.
- [17] R. N. Reusch, Proc. Soc. Exp. Biol. Med. 1989, 191, 377.
- [18] R. N. Reusch, Chem. Phys. Lipids 1990, 54, 221.
- [19] R. N. Reusch, FEMS Microbiol. Rev. 1992, 103, 119.
- [20] R. N. Reusch, A. W. Sparrow, J. Gardiner, Biochim. Biophys. Acta 1992, 1123, 33.
- [21] R. N. Reusch, R. Huang, L. L. Bramble, Biophys. J. 1995, 69, 754.
- [22] D. Seebach, A. Brunner, H. M. Bürger, J. Schneider, R. N. Reusch, Eur. J. Biochem. 1994, 224, 317.
- [23] D. A. Plattner, A. Brunner, M. Dobler, H.-M. Müller, W. Petter, P. Zbinden, D. Seebach, Helv. Chim. Acta 1993, 76, 2004.
- [24] D. Seebach, H.M. Bürger, H.-M. Müller, U.D. Lengweiler, A.K. Beck, K.E. Sykes, P.A. Barker, P.J. Barham, *Helv. Chim. Acta* 1994, 77, 1099.
- [25] M. Yokouchi, Y. Chatani, H. Tadokoro, K. Teranishi, H. Tani, Polymer 1973, 14, 267.
- [26] J. Cornibert, R. H. Marchessault, J. Mol. Biol. 1972, 71, 735.
- [27] S. Brückner, S.V. Meille, L. Malpezzi, A. Cesaro, L. Navarini, R. Tombolini, Macromolecules 1988, 21, 967.
- [28] D. Seebach, T. Hoffmann, F. N. M. Kühnle, U. D. Lengweiler, Helv. Chim. Acta 1994, 77, 2007.
- [29] D. Seebach, A. Brunner, H. M. Bürger, R. N. Reusch, L. L. Bramble, Helv. Chim. Acta 1996,79, 507.
- [30] K.S. Lee, G. Wegner, Macromol. Chem., Rapid Commun. 1985, 6, 203.
- [31] E. Igner, O. I. Paynter, D. J. Simmonds, M. C. Whiting, J. Chem. Soc., Perkin Trans. 1 1987, 2447.
- [32] I. Bidd, D. W. Holdup, M. C. Whiting, J. Chem. Soc., Perkin Trans. 1 1987, 2455.
- [33] E.A. Adegoke, H. Ephraim-Bassay, D.J. Kelly, M.C. Whiting, J. Chern. Soc., Perkin Trans. 1987, 2465.
- [34] M. Rothe, in 'Chemistry and Physics of Macromolecules: Final Report of the Sonderforschungsbereich Chemie und Physik der Makromoleküle', Eds. E. W. Fischer, R. C. Schulz und H. Sillescu, Verlag Chemie VCH, Weinheim, 1991, S. 30–60.

- [35] Z. Xu, J. S. Moore, Angew. Chem. 1993, 105, 261.
- [36] I. Ohlsen, J. M. Merrick, I. J. Goldstein, Biochemistry 1965, 4, 453.
- [37] U. Brändli, Dissertation, ETH Zürich, Nr. 8680, 1988.
- [38] Y. Shirakura, T. Fukui, T. Tanio, K. Nakayama, R. Matsuno, K. Tomita, Biochim. Biophys. Acta 1983, 748, 331.
- [39] Y. Shirakura, T. Fukui, T. Saito, Y. Okamoto, T. Narikawa, K. Koide, K. Tomita, T. Takemasa, S. Masamune, *Biochim. Biophys. Acta* 1986, 880, 46.
- [40] T. Tanio, T. Fukui, Y. Shirakura, T. Saito, K. Tomita, T. Kaiho, S. Masamune, Eur. J. Biochem. 1982, 124, 71.
- [41] H. M. Bürger, H.-M. Müller, D. Seebach, K.O. Brönsen, M. Schär, H. M. Widmer, Macromolecules 1993, 26, 4783.
- [42] G.W. Anderson, F.M. Callahan, J. Am. Chem. Soc. 1960, 82, 3359.
- [43] L. H. Klemm, E. P. Antoniades, D. C. Lind, J. Org. Chem. 1962, 27, 519.
- [44] C. J. Pederson, J. Am. Chem. Soc. 1967, 89, 7017.
- [45] T. W. Greene, P. G. M. Wuts, 'Protective Groups in Organic Synthesis', 2. Aufl., John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1991.
- [46] P.J. Kocienski, 'Protecting Groups', Eds. D. Enders, R. Noyori und B.M. Trost, Georg Thieme Verlag, Stuttgart, New York, 1994.
- [47] In 'Protective Groups in Organic Chemistry', Ed. J. F. W. McOmie, Plenum Press, New York, 1974.
- [48] V. N. R. Pillai, Synthesis 1980, 1.
- [49] V.N. R. Pillai, Org. Photochem. 1987, 9, 225.
- [50] D. Seebach, M. Züger, Helv. Chim. Acta 1982, 65, 495.
- [51] D. Seebach, A. K. Beck, R. Breitschuh, K. Job, Org. Synth. 1992, 71, 39.
- [52] D. Seebach, E. Hungerbühler, R. Näf, P. Schnurrenberger, B. Weidmann, M. Züger, Synthesis 1982, 138.
- [53] G. Simchen, J. Heberle, 'Silylating Agents', 2. Aufl., Fluka Chemie AG, Buchs, 1995.
- [54] H.-M. Müller, Dissertation, ETH Zürich, Nr. 9685, 1992.
- [55] U.D. Lengweiler, Dissertation, ETH Zürich, Nr. 11405, 1995.
- [56] M.G. Fritz, Diplomarbeit, ETH Zürich, 1995.
- [57] J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, Bull. Chem. Soc. Jpn. 1979, 52, 1989.
- [58] H. Schröder, 'Massenspektroskopie', Springer-Verlag, Heidelberg, 1991.
- [59] F.G. Riddell, D. Seebach, H.-M. Müller, Helv. Chim. Acta 1993, 76, 915.
- [60] M. A. Maestro, M. Sefkow, D. Seebach, Liebigs Ann. Chem. 1994, 731.
- [61] E.P. Boden, G.E. Keck, J. Org. Chem. 1985, 50, 2394.
- [62] E.J. Corey, K.C. Nicolaou, J. Am. Chem. Soc. 1974, 96, 5614.
- [63] S. Kim, J. I. Lee, J. Org. Chem. 1984, 49, 1712.
- [64] M. Rothe, M. Lohmüller, U. Breuksch, G. Schmidtberg, Angew. Chem. 1994, 106, 2047.
- [65] ZENECA Bio Products, PO Box 2, Belasis Avenue Billingham, Cleveland TS23 1YN, England.
- [66] JUPAC: Macromolecular Division, Commission on Macromolecular Nomenclature, Pure Appl. Chem. 1974, 40, 477.
- [67] S.J. Organ, P.J. Barham, Polymer 1993, 34, 2169.
- [68] R.H. Marchessault, K. Okamura, C. Su, Macromolecules 1970, 3, 735.
- [69] Y. Doi, M. Kunioka, Y. Nakamura, K. Soga, Macromolecules 1986, 19, 1274.
- [70] N. Kamiya, Y. Inoue, Y. Yamamoto, R. Chujo, Y. Doi, Macromolecules 1989, 22, 1676.
- [71] N. Kamiya, Y. Inoue, Y. Yamamoto, R. Chujo, Y. Doi, *Macromolecules* 1990, 23, 1313.
- [72] S. Akita, Y. Einaga, Y. Miyaki, H. Fujita, Macromolecules 1976, 9, 774.
- [73] Y. Doi, 'Microbial Polyester', Verlag Chemie VCH, Weinheim, 1990.
- [74] Y. Doi, M. Kunioka, Y. Nakamura, K. Soga, Macromolecules 1986, 19, 2860.
- [75] P. Dais, M. E. Nedea, F. G. Morin, R. H. Marchessault, Macromolecules 1989, 22, 4208.
- [76] R. D. Smith, J. A. Loo, R. R. O. Loo, M. Busman, H. R. Udseth, Mass Spectrom. Rev. 1991, 10, 359.
- [77] M. Przybylski, M. Glocker, S. Bauer (Universität Konstanz), unveröffentlichte Ergebnisse.
- [78] K.E. Sykes, T.J. McMaster, M.J. Miles, P.A. Barker, P.J. Barham, D. Seebach, H.-M. Müller, U.D. Lengweiler, J. Mat. Sci. 1995, 30, 623.
- [79] D. Seebach, U. Brändli, H.-M. Müller, M. Dobler, M. Egli, M. Przybylski, K. Schneider, Helv. Chim. Acta 1989, 72, 1704.
- [80] F. N.M. Kühnle, Teil der geplanten Dissertation, ETH Zürich, 1993-1996.
- [81] H.-M. Müller, M. Dobler, P. Zbinden, D. Seebach, Chimia 1991, 45, 376.
- [82] M. Scandola, G. Ceccorulli, M. Pizzoli, M. Gazzano, Macromolecules 1992, 25, 1405.
- [83] IUPAC Commission on Macromolecular Nomenclature, Pure Appl. Chem. 1976, 48, 375.
- [84] K. Mori, H. Mori, T. Sugai, Tetrahedron 1985, 41, 919.